Вы можете изменить форму данных: использовать даты и метки строк и использовать страну, провинцию в качестве меток столбцов.
import pandas as pd
covid_csv = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv'
df_raw = (pd.read_csv(covid_csv)
.set_index(['Country/Region', 'Province/State'])
.drop(columns=['Lat', 'Long'])
.transpose())
df_raw.index = pd.to_datetime(df_raw.index)
print( df_raw.iloc[-5:, 0:5] )
Country/Region Afghanistan Albania Algeria Andorra Angola
Province/State NaN NaN NaN NaN NaN
2020-07-27 1269 144 1163 52 41
2020-07-28 1270 148 1174 52 47
2020-07-29 1271 150 1186 52 48
2020-07-30 1271 154 1200 52 51
2020-07-31 1272 157 1210 52 52
Теперь вы можете использовать богатый набор инструментов pandas для времени -серийный анализ. Например, используйте от diff()
до go от совокупного количества смертей до дневных ставок. Или вы можете вычислить скользящие средние за N дней, создать графики временных рядов, ...
print(df_raw.diff().iloc[-5:, 0:5])
Country/Region Afghanistan Albania Algeria Andorra Angola
Province/State NaN NaN NaN NaN NaN
2020-07-27 10.0 6.0 8.0 0.0 1.0
2020-07-28 1.0 4.0 11.0 0.0 6.0
2020-07-29 1.0 2.0 12.0 0.0 1.0
2020-07-30 0.0 4.0 14.0 0.0 3.0
2020-07-31 1.0 3.0 10.0 0.0 1.0
Наконец, df_raw.sum(level='Country/Region', axis=1)
объединит все провинции в стране.