У меня есть 2 столбца данных в pandas DF, который выглядит следующим образом со столбцом «DateTime» в формате ГГГГ-ММ-ДД ЧЧ: ММ: СС - это первые 24 часа, но df для одного полного год или 8784 x 2.
BAFFIN BAY DateTime
8759 8.112838 2016-01-01 00:00:00
8760 7.977169 2016-01-01 01:00:00
8761 8.420204 2016-01-01 02:00:00
8762 9.515370 2016-01-01 03:00:00
8763 9.222840 2016-01-01 04:00:00
8764 8.872423 2016-01-01 05:00:00
8765 8.776145 2016-01-01 06:00:00
8766 9.030668 2016-01-01 07:00:00
8767 8.394983 2016-01-01 08:00:00
8768 8.092915 2016-01-01 09:00:00
8769 8.946967 2016-01-01 10:00:00
8770 9.620883 2016-01-01 11:00:00
8771 9.535951 2016-01-01 12:00:00
8772 8.861761 2016-01-01 13:00:00
8773 9.077692 2016-01-01 14:00:00
8774 9.116074 2016-01-01 15:00:00
8775 8.724343 2016-01-01 16:00:00
8776 8.916940 2016-01-01 17:00:00
8777 8.920438 2016-01-01 18:00:00
8778 8.926278 2016-01-01 19:00:00
8779 8.817666 2016-01-01 20:00:00
8780 8.704014 2016-01-01 21:00:00
8781 8.496358 2016-01-01 22:00:00
8782 8.434297 2016-01-01 23:00:00
Я пытаюсь вычислить средние дневные значения «БАФФИНОВАЯ ЗАЛИВА», и я пробовал следующие подходы:
davg_df2 = df2.groupby(pd.Grouper(freq='D', key='DateTime')).mean()
davg_df2 = df2.groupby(pd.Grouper(freq='1D', key='DateTime')).mean()
davg_df2 = df2.groupby(by=df2['DateTime'].dt.date).mean()
Все эти подходы дают тот же ответ, что показан ниже: BAFFIN BAY DateTime
2016-01-01 6.008044
Однако, если вы сделаете математику, правильное среднее значение для 2016-01-01 будет 8,813134 Большое спасибо за вашу помощь. Я предполагаю, что группировка выполняется только по дням или 24 часам для получения последовательных ЕЖЕДНЕВНЫХ средних значений, но 3 подхода, приведенные выше, явно смотрят на другие данные в моем 8784 x 2 DF.