Изначально это был мой фрагмент кода:
Здесь X - это массив точек данных с размерами (mxn), где m - количество точек данных для прогнозирования, а n - количество функций без члена смещения .
y - это метки данных с формой (m,)
lambda_ - это термин регуляризации.
from scipy import optimize
def oneVsAll(X,y,num_labels,lambda_):
#used to find the optimal parametrs theta for each label against the others
#X (m,n)
#y (m,)
#num_labels : possible number of labels
#lambda_ : regularization param
#all_theta : trained param for logistic reg for each class
#hence (k,n+1) where k is #labels and n+1 is #features with bias
m,n = X.shape
all_theta = np.array((num_labels,n+1))
X = np.concatenate([np.ones((m,1)),X],axis = 1)
for k in np.arange(num_labels):
#y == k will generate a list with shape of y,but 1 only for index with value same as k and rest with 0
initial_theta = np.zeros(n+1)
options = {"maxiter" : 50}
res = optimize.minimize(lrCostFunction,
initial_theta,args = (X,y==k,lambda_),
jac = True,method = 'CG',
options = options)
all_theta[k] = res.x
return all_theta
lambda_ = 0.1
all_theta = oneVsAll(X,y,num_labels,lambda_)
Я получил ошибку:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-45-f9501694361e> in <module>()
1 lambda_ = 0.1
----> 2 all_theta = oneVsAll(X,y,num_labels,lambda_)
<ipython-input-44-05a9b582ccaf> in oneVsAll(X, y, num_labels, lambda_)
20 jac = True,method = 'CG',
21 options = options)
---> 22 all_theta[k] = res.x
23 return all_theta
ValueError: setting an array element with a sequence.
Затем после отладки я изменил код на:
from scipy import optimize
def oneVsAll(X,y,num_labels,lambda_):
#used to find the optimal parametrs theta for each label against the others
#X (m,n)
#y (m,)
#num_labels : possible number of labels
#lambda_ : regularization param
#all_theta : trained param for logistic reg for each class
#hence (k,n+1) where k is #labels and n+1 is #features with bias
m,n = X.shape
all_theta = np.array((num_labels,n+1),dtype = "object")
X = np.concatenate([np.ones((m,1)),X],axis = 1)
for k in np.arange(num_labels):
#y == k will generate a list with shape of y,but 1 only for index with value same as k and rest with 0
initial_theta = np.zeros(n+1)
options = {"maxiter" : 50}
res = optimize.minimize(lrCostFunction,
initial_theta,args = (X,y==k,lambda_),
jac = True,method = 'CG',
options = options)
all_theta[k] = res.x
return all_theta
Теперь я получаю следующую ошибку:
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-47-f9501694361e> in <module>()
1 lambda_ = 0.1
----> 2 all_theta = oneVsAll(X,y,num_labels,lambda_)
<ipython-input-46-383fc22e26cc> in oneVsAll(X, y, num_labels, lambda_)
20 jac = True,method = 'CG',
21 options = options)
---> 22 all_theta[k] = res.x
23 return all_theta
IndexError: index 2 is out of bounds for axis 0 with size 2
Как я могу это исправить?