Я обучил эту модель:
(training_eins,training_zwei),(test_eins,test_zwei) = tf.keras.datasets.imdb.load_data(num_words=10_000)
training_eins = tf.keras.preprocessing.sequence.pad_sequences(training_eins,maxlen=200)
test_eins = tf.keras.preprocessing.sequence.pad_sequences(test_eins,maxlen=200)
modell = Sequential()
modell.add(layers.Embedding(10_000,256,input_length=200))
modell.add(layers.Dropout(0.3))
modell.add(layers.GlobalMaxPooling1D())
modell.add(layers.Dense(128))
modell.add(layers.Activation("relu"))
modell.add(layers.Dropout(0.5))
modell.add(layers.Dense(1))
modell.add(layers.Activation("sigmoid"))
modell.compile(loss = "binary_crossentropy", optimizer = "adam", metrics = ["acc"])
modell.summary()
ergebnis = modell.fit(training_eins,
training_zwei,
epochs = 10,
verbose = 1,
batch_size = 500,
validation_data = (test_eins,test_zwei))
Теперь я хочу протестировать производительность модели на этом тексте (в качестве примера): very bad, I am truly disappointed
Итак, как можно Я преобразовываю этот текст в список, который можно передать модели?
Я знаю только, что модель ожидает списки вроде
[1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65, 458, 4468, 66, 3941, 4, 173, 36, 256, 5, 25, 100, 43, 838, 112, 50, 670, 2, 9, 35, 480, 284, 5, 150, 4, 172, 112, 167, 2, 336, 385, 39, 4, 172, 4536, 1111, 17, 546, 38, 13, 447, 4, 192, 50, 16, 6, 147, 2025, 19, 14, 22, 4, 1920, 4613, 469, 4, 22, 71, 87, 12, 16, 43, 530, 38, 76, 15, 13, 1247, 4, 22, 17, 515, 17, 12, 16, 626, 18, 2, 5, 62, 386, 12, 8, 316, 8, 106, 5, 4, 2223, 5244, 16, 480, 66, 3785, 33, 4, 130, 12, 16, 38, 619, 5, 25, 124, 51, 36, 135, 48, 25, 1415, 33, 6, 22, 12, 215, 28, 77, 52, 5, 14, 407, 16, 82, 2, 8, 4, 107, 117, 5952, 15, 256, 4, 2, 7, 3766, 5, 723, 36, 71, 43, 530, 476, 26, 400, 317, 46, 7, 4, 2, 1029, 13, 104, 88, 4, 381, 15, 297,
98, 32, 2071, 56, 26, 141, 6, 194, 7486, 18, 4, 226, 22, 21, 134, 476, 26, 480, 5, 144, 30, 5535, 18, 51, 36, 28, 224, 92, 25, 104, 4, 226, 65, 16, 38, 1334, 88, 12, 16, 283, 5, 16, 4472, 113, 103, 32, 15, 16, 5345, 19, 178, 32]