pandas
имеет функцию replace(dictionary)
, где dictionary
похоже на
{"Cal Tech": "California Institute of Technology"}
Потому что pandas.DataFrame
вдохновлен R
, поэтому, вероятно, R
имеет что-то похожее.
data = {
'Cal Tech': 'California Institute of Technology',
'NYU': 'New York University',
'MIT': 'Massachusetts Institute of Technology',
'Ga Tech': 'Georgia Institute of Technology',
'Georgia Tech': 'Georgia Institute of Technology',
'Rutgers': 'Rutgers University',
'Berkley': 'University of California, Berkley',
'UCLA': 'University of California, Los Angeles',
}
import pandas as pd
df = pd.DataFrame({
'Education': ['Cal Tech', 'NYU', 'MIT', 'Ga Tech', 'Georgia Tech', 'Rutgers', 'Berkley', 'UCLA']
})
df['New Education'] = df['Education'].replace(data)
print(df)
Результат:
Education New Education
0 Cal Tech California Institute of Technology
1 NYU New York University
2 MIT Massachusetts Institute of Technology
3 Ga Tech Georgia Institute of Technology
4 Georgia Tech Georgia Institute of Technology
5 Rutgers Rutgers University
6 Berkley University of California, Berkley
7 UCLA University of California, Los Angeles
Если вы используете regex=True
, то его можно заменить и в более длинной строке
data = {
'Cal Tech': 'California Institute of Technology',
'NYU': 'New York University',
'MIT': 'Massachusetts Institute of Technology',
'Ga Tech': 'Georgia Institute of Technology',
'Georgia Tech': 'Georgia Institute of Technology',
'Rutgers': 'Rutgers University',
'Berkley': 'University of California, Berkley',
'UCLA': 'University of California, Los Angeles',
}
import pandas as pd
df = pd.DataFrame({
'Education': ['I am from MIT']
})
df['New Education'] = df['Education'].replace(data, regex=True)
print(df)
Результат:
Education New Education
0 I am from MIT I am from Massachusetts Institute of Technology
Do c: pandas .DataFrame.replace ()