Простая архитектура кодера-декодера:
input = Input(shape=(32, 32, 3))
output = input
output = Conv2D(filters=16, kernel_size=3, padding='same', use_bias=False)(output)
output = Conv2DTranspose(filters=3, kernel_size=3, padding='same', use_bias=False)(output)
model = Model(inputs=input, outputs=output)
print(model.summary())
Вывод:
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 32, 32, 3) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 32, 32, 16) 432
_________________________________________________________________
conv2d_transpose_1 (Conv2DTr (None, 32, 32, 3) 432
=================================================================
Total params: 864
Trainable params: 864
Non-trainable params: 0
Мне нужны одинаковые веса в Conv2D
и Conv2DTranspose
. Возможно ли это в Keras?