Набор данных ниже
,id,revenue ,profit
0,101,779183,281257
1,101,144829,838451
2,101,766465,757565
3,101,353297,261071
4,101,1615461,275760
5,101,246731,949229
6,101,951518,301016
7,101,444669,430583
Код ниже
import pandas as pd;
from sklearn.cluster import DBSCAN
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import StandardScaler
import seaborn as sns
from sklearn.neighbors import NearestNeighbors
df = pd.read_csv('1.csv',index_col=None)
df1 = StandardScaler().fit_transform(df)
dbsc = DBSCAN(eps = 2.5, min_samples = 20).fit(df1)
labels = dbsc.labels_
Моя форма df - 1999
Я получил значение провала eps
значение из ниже метод, из графика видно, что eps = 2,5
введите описание изображения здесь
Ниже приведен метод определения наилучшего значения eps
ns = 5
nbrs = NearestNeighbors(n_neighbors=ns).fit(df3)
distances, indices = nbrs.kneighbors(df3)
distanceDec = sorted(distances[:,ns-1], reverse=True)
plt.plot(indices[:,0], distanceDec)
#plt.plot(list(range(1,2000)), distanceDec)
- Как найти провал на графике автоматически по среднему системному среднему ожидаемому
eps
вне? не заглядывая в график, моя система должна показывать eps