У меня есть этот набор данных, чтобы попытаться выполнить задачу классификации с использованием classif.ada
library(mlr)
data("HouseVotes84")
#Using HouseVotes84 as Classification Task Dataset and mtcars as Regression Task Dataset
dummy_data_classif <- HouseVotes84[,2:length(colnames(HouseVotes84))] %>%
mutate_if(is.factor, as.numeric)
dummy_data_classif <- data.frame(cbind(Class=HouseVotes84[,1], dummy_data_classif))
dummy_data_classif[is.na(dummy_data_classif)] <- 0
dummy_data_classif_numeric <- dummy_data_classif[-1] %>%
mutate_if(is.factor, as.numeric)
dummy_data_classif_numeric <- data.frame(cbind(dummy_data_classif[1],
dummy_data_classif_numeric))
colnames(dummy_data_classif_numeric) <- colnames(dummy_data_classif)
, и у меня есть это выражение параметра в строке, которая будет оцениваться позже для параметра classif.ada, установленного в MLR
param_to_eval
"hyperparam <<- makeParamSet(
makeIntegerParam(\"iter\",lower = 50,upper=250),
makeIntegerParam(\"max.iter\",lower = 30,upper=200),
makeLogicalParam(\"model.coef\",FALSE, tunable=FALSE),
makeDiscreteParam(\"loss\",values = c(\"exponential\", \"logistic\")),
makeDiscreteParam(\"type\",values = c(\"discrete\", \"real\", \"gentle\")),
makeNumericParam(\"nu\",lower = 0,upper=100),
makeNumericParam(\"bag.frac\",lower = 0,upper=1),
makeLogicalParam(\"bag.shift\"),
makeNumericParam(\"delta\",lower = 0,upper=1e-07),
makeIntegerParam(\"minsplit\",lower = 1,upper=30),
makeIntegerParam(\"minbucket\",lower = 1,upper=20),
makeNumericParam(\"cp\",lower = 0,upper=1),
makeIntegerParam(\"maxcompete\",lower = 0,upper=6),
makeIntegerParam(\"maxsurrogate\",lower = 0,upper=7.5),
makeDiscreteParam(\"usesurrogate\",values = c(0, 1, 2)),
makeDiscreteParam(\"surrogatestyle\",values = c(0, 1)),
makeIntegerParam(\"maxdepth\",lower = 1,upper=30))"
Затем я определил задачи для classif.ada и запланировал настроить 20 случайных наборов параметров
task <- makeClassifTask(data = dummy_data_classif_numeric,
target = "Class")
lrn <- makeLearner(cl = "classif.ada", fix.factors.prediction = TRUE)
eval(parse(text=param_to_eval))
hyper_search <- makeTuneControlRandom(maxit = 20)
resampling_method <- makeResampleDesc("cv")
# Perform tuning
lrn_tune <- tuneParams(learner = "classif.ada", task = task,
resampling = resampling_method,
control = hyper_search, par.set = hyperparam)
В этих примерах я хочу, чтобы гиперпараметр "model.coef"
содержал только FALSE
значение для настройки. После их запуска model.coef
по-прежнему настраивается между TRUE
и FALSE
и появляется следующая ошибка:
[Tune] Started tuning learner classif.ada for parameter set:
Type len Def Constr Req Tunable Trafo
iter integer - - 50 to 250 - TRUE -
max.iter integer - - 30 to 200 - TRUE -
model.coef logical - FALSE - - FALSE -
loss discrete - - exponential,logistic - TRUE -
type discrete - - discrete,real,gentle - TRUE -
nu numeric - - 0 to 100 - TRUE -
bag.frac numeric - - 0 to 1 - TRUE -
bag.shift logical - - - - TRUE -
delta numeric - - 0 to 1e-07 - TRUE -
minsplit integer - - 1 to 30 - TRUE -
minbucket integer - - 1 to 20 - TRUE -
cp numeric - - 0 to 1 - TRUE -
maxcompete integer - - 0 to 6 - TRUE -
maxsurrogate integer - - 0 to 7.5 - TRUE -
usesurrogate discrete - - 0,1,2 - TRUE -
surrogatestyle discrete - - 0,1 - TRUE -
maxdepth integer - - 1 to 30 - TRUE -
With control class: TuneControlRandom
Imputation value: 1
[Tune-x] 1: iter=233; max.iter=141; model.coef=FALSE; loss=exponential; type=gentle; nu=63.5; bag.frac=0.686; bag.shift=TRUE; delta=3.49e-08; minsplit=21; minbucket=2; cp=0.881; maxcompete=1; maxsurrogate=2; usesurrogate=2; surrogatestyle=0; maxdepth=17
[Tune-y] 1: mmce.test.mean=0.0598309; time: 0.8 min
[Tune-x] 2: iter=230; max.iter=115; model.coef=TRUE; loss=exponential; type=gentle; nu=39.6; bag.frac=0.35; bag.shift=TRUE; delta=4.87e-08; minsplit=1; minbucket=2; cp=0.523; maxcompete=4; maxsurrogate=7; usesurrogate=0; surrogatestyle=1; maxdepth=21
Error in if (any(wt < 0)) stop("negative weights not allowed") :
missing value where TRUE/FALSE needed
In addition: Warning message:
In log((1 - errm)/errm) :
Error in if (any(wt < 0)) stop("negative weights not allowed") :
missing value where TRUE/FALSE needed
Как сделать, чтобы "model.coef"
содержал только FALSE
?