Я рекомендую использовать слой Input , а не InputLayer , вам часто не нужно использовать InputLayer , в любом случае вероятность того, что форма вашего ввода и LSTM Форма ввода слоя была неправильной, здесь модификация, которую я сделал с некоторыми комментариями.
# xx should be 3d for LSTM
xx = tf.ragged.constant([
[[0.1, 0.2]],
[[0.4, 0.7 , 0.5, 0.6]]
])
"""
Labels represented as OneHotEncoding so you
should use CategoricalCrossentropy instade of SparseCategoricalCrossentropy
"""
yy = np.array([[0, 0, 1], [1,0,0]])
# For ragged tensor , get maximum sequence length
max_seq = xx.bounding_shape()[-1]
mdl = tf.keras.Sequential([
# Input Layer with shape = [Any, maximum sequence length]
tf.keras.layers.Input(shape=[None, max_seq], batch_size=2, dtype=tf.float32, ragged=True),
tf.keras.layers.LSTM(64),
tf.keras.layers.Dense(3, activation='softmax')
])
# CategoricalCrossentropy
mdl.compile(loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(1e-4),
metrics=['accuracy'])
mdl.summary()
history = mdl.fit(xx, yy, epochs=10)