Я использую свой графический процессор для вычислений на своем ноутбуке, где я видел, что графический процессор 0 предназначен для моей интегрированной карты графического c, а 1 - это моя внешняя графическая карта c nvidia 1050. (из диспетчера задач) я просто хочу убедиться, что во время компиляции мой компилятор pycharm использует gpu 1, но я не могу этого сделать.
Вот подробности журнала ....
2020-05-06 21:00:06.478540: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
2020-05-06 21:00:20.723309: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1096] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-05-06 21:00:20.724072: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] 0
2020-05-06 21:00:20.724203: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] 0: N
2020-05-06 21:00:20.787933: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1241] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 2997 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050, pci bus id: 0000:01:00.0, compute capability: 6.1)
WARNING:tensorflow:Large dropout rate: 0.7 (>0.5). In TensorFlow 2.x, dropout() uses dropout rate instead of keep_prob. Please ensure that this is intended.
2020-05-06 21:00:38.294984: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-05-06 21:00:45.280700: W tensorflow/stream_executor/gpu/redzone_allocator.cc:312] Internal: Invoking GPU asm compilation is supported on Cuda non-Windows platforms only
Relying on driver to perform ptx compilation. This message will be only logged once.
2020-05-06 21:00:45.449255: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2020-05-06 21:01:05.026230: W tensorflow/core/common_runtime/bfc_allocator.cc:243] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.15GiB with freed_by_count=0. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory were available.
Process finished with exit code 0