это код для сентиментального анализа только для одного обзора, поскольку у нас нет набора данных, я не могу понять, какой будет второй параметр для метода classifier.fit в наивной байесовской модели?
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Cleaning the code
import re
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
new_review = 'I love this restaurant so much'
new_review = re.sub('[^a-zA-Z]', ' ', new_review)
new_review = new_review.lower()
new_review = new_review.split()
ps = PorterStemmer()
all_stopwords = stopwords.words('english')
all_stopwords.remove('not')
new_review = [ps.stem(word) for word in new_review if not word in set(all_stopwords)]
new_review = ' '.join(new_review)
new_corpus = [new_review]
#Creating the bag of word model
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(3)
new_X_test = cv.fit_transform(new_corpus).toarray()
#new_X_test = cv.transform(new_corpus).toarray()
# training in Naive bayes model
from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(new_X_test, )
# predict the result
#y_pred = classifier.predict(X)
new_y_pred = classifier.predict(new_X_test)
print(new_y_pred)
#new_X_test = cv.transform(new_corpus).toarray()
#new_y_pred = classifier.predict(X)
#print(new_y_pred)