У меня есть список текстовых комментариев, которые вводятся в программу моделирования неотрицательной матричной факторизации topi c.
import pandas as pd
import numpy as np
# load the data
import csv
with open('C:\\...\\comments.csv', newline='') as f:
reader = csv.reader(f)
next(reader) # skip header
df = [tuple(row) for row in reader]
# set the number of topics
total_topics = 3
# process the data
from nltk.tokenize import word_tokenize
from collections import defaultdict
from nltk.corpus import wordnet as wn
from nltk.stem import WordNetLemmatizer
from nltk import pos_tag
from gensim.parsing.preprocessing import remove_stopwords
from nltk.corpus import stopwords
data_text = pd.DataFrame(df,columns=['text'])
# remove stopwords and tokenize the text
custom_stops = ["stopword1", "stopword2", "stopword3"]
data_text['filtered_text'] = data_text['text'].apply(lambda x: remove_stopwords(x.lower()))
data_text['filtered_text'] = data_text['filtered_text'].apply(lambda x: str.split(x))
data_text['filtered_text'] = data_text['filtered_text'].apply(lambda x: [item for item in x if item.lower() not in custom_stops])
CORPUS = pd.DataFrame(data_text['filtered_text'])
# Remove empty strings
CORPUS.dropna(inplace=True)
# WordNetLemmatizer requires Pos tags to understand if the word is noun or verb or adjective etc. By default it is set to Noun
tag_map = defaultdict(lambda : wn.NOUN)
tag_map['J'] = wn.ADJ
tag_map['V'] = wn.VERB
tag_map['R'] = wn.ADV
# lemmatize the text
for index,entry in enumerate(CORPUS['filtered_text']):
# Declaring Empty List to store the words that follow the rules for this step
Final_words = []
# Initializing WordNetLemmatizer()
word_Lemmatized = WordNetLemmatizer()
# pos_tag function below will provide the 'tag' i.e if the word is Noun(N) or Verb(V) or something else.
for word, tag in pos_tag(entry):
# Below condition is to check for Stop words and consider only alphabets
if word not in stopwords.words('english') and word.isalpha():
word_Final = word_Lemmatized.lemmatize(word,tag_map[tag[0]])
Final_words.append(word_Final)
# The final processed set of words for each iteration will be stored in 'text_final'
CORPUS.loc[index,'text_final'] = str(Final_words)
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
def build_feature_matrix(documents, feature_type='frequency'):
feature_type = feature_type.lower().strip()
if feature_type == 'binary':
vectorizer = CountVectorizer(binary=True, min_df=1,ngram_range=(1, 1))
elif feature_type == 'frequency':
vectorizer = CountVectorizer(binary=False, min_df=1,ngram_range=(1, 1))
elif feature_type == 'tfidf':
vectorizer = TfidfVectorizer(min_df=1, ngram_range=(1, 1))
else:
raise Exception("Wrong feature type entered. Possible values: 'binary', 'frequency', 'tfidf'")
feature_matrix = vectorizer.fit_transform(documents).astype(float)
return vectorizer, feature_matrix
# create a feature matrix
vectorizer, tfidf_matrix = build_feature_matrix(CORPUS['text_final'], feature_type='tfidf')
td_matrix = tfidf_matrix.transpose()
td_matrix = td_matrix.multiply(td_matrix > 0)
from sklearn.decomposition import NMF
nmf = NMF(n_components=total_topics, random_state=42, alpha=.1, l1_ratio=.5)
nmf.fit(tfidf_matrix)
def get_topics_terms_weights(weights, feature_names):
feature_names = np.array(feature_names)
sorted_indices = np.array([list(row[::-1])
for row
in np.argsort(np.abs(weights))])
sorted_weights = np.array([list(wt[index])
for wt, index
in zip(weights,sorted_indices)])
sorted_terms = np.array([list(feature_names[row])
for row
in sorted_indices])
topics = [np.vstack((terms.T,
term_weights.T)).T
for terms, term_weights
in zip(sorted_terms, sorted_weights)]
return topics
def print_topics_udf(topics, total_topics=1,
weight_threshold=0.0001,
display_weights=False,
num_terms=None):
for index in range(total_topics):
topic = topics[index]
topic = [(term, float(wt))
for term, wt in topic]
topic = [(word, round(wt,2))
for word, wt in topic
if abs(wt) >= weight_threshold]
if display_weights:
print( 'Topic #' +str(index+1)+' with weights')
print (topic[:num_terms] if num_terms else topic)
else:
print ('Topic #'+str(index+1)+' without weights')
tw = [term for term, wt in topic]
print (tw[:num_terms] if num_terms else tw)
print()
feature_names = vectorizer.get_feature_names()
weights = nmf.components_
topics = get_topics_terms_weights(weights, feature_names)
# print topics and weights
# print_topics_udf(topics=topics,total_topics=total_topics,num_terms=None,display_weights=False)
# print topics with weights
# print_topics_udf(topics=topics,total_topics=total_topics,num_terms=None,display_weights=True)
# display the topics
# this takes the top term from each group and assigns it as the topic theme
for index in range(0,total_topics):
print("Topic",index+1,"=",topics[index][0][0])
Пример вывода может быть примерно таким:
Topic 1 = problem
Topic 2 = software
Topic 3 = recommendation
Как я могу назначить специальный c комментарий из файла c topi c? например, комментарий «Мой компьютер периодически выключается» будет сопоставлен с Topi c 1 «проблема»