Я пытаюсь обучить модель на наборе данных 40x40 изображений в оттенках серого, и я получаю эту ошибку:
ValueError: целевой массив с формой (32, 5) был передан для вывода формы (Нет, 4) при использовании в качестве потерь categorical_crossentropy
. Эта потеря предполагает, что цели будут иметь ту же форму, что и результат.
Я не знаю, откуда берется массив (32, 5), как должен быть (32, 4), поэтому я не знала, что менять. Есть предложения?
image_generator = ImageDataGenerator(#rescale = 1/255,
shear_range = 0.3,
zoom_range = 0.1,
rotation_range = 30,
width_shift_range = 0.08,
height_shift_range = 0.08,
horizontal_flip = True,
fill_mode = 'nearest',
)
train_image_generator = image_generator.flow_from_directory('/data1/mypath/generated-images/train',
target_size = (40,40),
color_mode = 'grayscale',
batch_size = 32,
class_mode = 'categorical')
test_image_generator = image_generator.flow_from_directory('/data1/mypath/generated-images/test',
target_size = (40,40),
color_mode = 'grayscale',
batch_size = 32,
class_mode = 'categorical',
shuffle = False)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),input_shape=(40,40, 1), activation='relu', padding='same'))
model.add(BatchNormalization(axis=-1))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Conv2D(32, kernel_size=(3,3),activation='relu', padding='same'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Conv2D(64, kernel_size=(3,3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.4))
model.add(Dense(4))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
early_stopping = EarlyStopping(monitor='val_loss',patience=5)
model.fit_generator(train_image_generator, epochs=150,
validation_data = test_image_generator,
callbacks=[early_stopping]) ```