Функция Spark map_values, к сожалению, сильно отличается от mapvalues функции R. Он возвращает значения из карты, а не значения сопоставления.
Как уже упоминалось другими, прямой замены значений карты в Spark нет
Вот один из способов сделать то, что вы описали
sparkR.session()
# Create initial dataframe
df <- createDataFrame(cbind(model = rownames(mtcars), mtcars))
# create a data frame with one column to find and one column to replace with
to_replace <- data.frame(find = c('Valiant', 'Datsun 710', 'Ferrari Dino'),
replace = c('Valiant v2.0', 'Datsun 710 (Retired)', 'Ferrari Dino (Raptor Edition)'))
# good pratice would be to match only entries that exactly match the find column, but not those that contain using regular expressions
to_replace_rexp <- data.frame(find = c('^Valiant$', '^Datsun 710$', '^Ferrari Dino$'),
replace = c('Valiant v2.0', 'Datsun 710 (Retired)', 'Ferrari Dino (Raptor Edition)'))
# Turn it into a spark dataframe
to_replace_spark <- createDataFrame(to_replace)
head(to_replace_spark)
# find replace
# Valiant Valiant v2.0
# Datsun 710 Datsun 710 (Retired)
# Ferrari Dino Ferrari Dino (Raptor Edition)
# Left join the to replace table, adding two columns with matching results
joined_data <- SparkR::join(df, to_replace_spark, df$model == to_replace_spark$find, 'left_outer')
head(joined_data)
# model mpg cyl disp hp drat wt qsec vs am gear carb find replace
# Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 <NA> <NA>
# Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 <NA> <NA>
# Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 <NA> <NA>
# Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Datsun 710 Datsun 710 (Retired)
# Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 <NA> <NA>
# Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 Valiant Valiant v2.0
# Replace the model column with the replace column if it isn't empty
joined_data_coal <- SparkR::mutate(joined_data, model = SparkR::coalesce(joined_data$replace, joined_data$model))
head(joined_data_coal)
# model mpg cyl disp hp drat wt qsec vs am gear carb find
# Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 <NA>
# Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 <NA>
# Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 <NA>
# Ferrari Dino (Raptor Edition) 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 Ferrari Dino
# Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 <NA>
# Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 <NA>
replace
# <NA>
# <NA>
# <NA>
# Ferrari Dino (Raptor Edition)
# <NA>
# <NA>
# Drop the columns we joined
data_final <- drop(joined_data_coal, c("find", "replace"))
head(data_final)
# model mpg cyl disp hp drat wt qsec vs am gear carb
# Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
# Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
# Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
# Ferrari Dino (Raptor Edition) 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
# Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
# Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
# Final results
head(filter(data_final, data_final$cyl == "6"))
model mpg cyl disp hp drat wt qsec vs am gear carb
# Ferrari Dino (Raptor Edition) 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
# Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
# Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
# Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
# Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
# Valiant v2.0 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1