Я пытаюсь вычислить оптический поток между двумя кадрами, а затем деформировать предыдущий кадр, используя вычисленный оптический поток. Я обнаружил, что cv2 имеет оптический поток Farneback, поэтому я использую его для вычисления потока. Я взял параметры по умолчанию из учебника cv2 и искажаю фрейм, используя код, указанный в этом ответе . Но когда я вижу деформированный кадр, он точно такой же, как и предыдущий, и без изменений (массивы равны).
При дальнейшей отладке я обнаружил, что вычисленные значения расхода слишком малы. Почему это происходит? Я что-то делаю не так?
Код :
def get_optical_flow(prev_frame: numpy.ndarray, next_frame: numpy.ndarray) -> numpy.ndarray:
prev_gray = skimage.color.rgb2gray(prev_frame)
next_gray = skimage.color.rgb2gray(next_frame)
flow = cv2.calcOpticalFlowFarneback(prev_gray, next_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
return flow
def warp_frame(prev_frame: numpy.ndarray, flow: numpy.ndarray):
h, w = flow.shape[:2]
flow = -flow
flow[:,:,0] += numpy.arange(w)
flow[:,:,1] += numpy.arange(h)[:,numpy.newaxis]
# res = cv2.remap(img, flow, None, cv2.INTER_LINEAR)
next_frame = cv2.remap(prev_frame, flow, None, cv2.INTER_LINEAR)
return next_frame
def demo1():
prev_frame_path = Path('./frame025.png')
next_frame_path = Path('./frame027.png')
prev_frame = skimage.io.imread(prev_frame_path.as_posix())
next_frame = skimage.io.imread(next_frame_path.as_posix())
flow = get_optical_flow(prev_frame, next_frame)
print(f'Flow: max:{flow.max()}, min:{flow.min()}, mean:{flow.__abs__().mean()}')
warped_frame = warp_frame(prev_frame, flow)
print(numpy.array_equal(prev_frame, warped_frame))
pyplot.subplot(1,3,1)
pyplot.imshow(prev_frame)
pyplot.subplot(1,3,2)
pyplot.imshow(next_frame)
pyplot.subplot(1,3,3)
pyplot.imshow(warped_frame)
pyplot.show()
return
Входные изображения :
Вывод :
Деформированное изображение точно такое же, как предыдущее изображение, но должно выглядеть как следующее изображение.
Любая помощь приветствуется!