Я пытаюсь построить кривую ro c из результата регрессии lasso logisti c. поэтому я использовал прогноз (), используя type = "response", чтобы получить вероятность. однако результат был противоположен тому, когда я сначала поставил type = "class"
, это мой набор данных. мой предсказатель имеет 2 уровня
selected_data$danger <- factor(selected_data$danger, levels = c(1,0))
lasso_data<-selected_data
str(lasso_data$danger)
# Factor w/ 2 levels "1","0": 1 1 1 1 1 1 1 1 1 1 ...
# partition
input_train <- createDataPartition(y=lasso_data$danger, p=0.8, list=FALSE)
train_dataset <- lasso_data[input_train,]
test_dataset <- lasso_data[-input_train,]
dim(train_dataset)
# [1] 768 62
dim(test_dataset)
# [1] 192 62
Я проверил оба случая (type = class, response) для сравнения.
lasso_model <- cv.glmnet( x=data.matrix(train_dataset[,-length(train_dataset)]), y = train_dataset[,length(train_dataset)],
family = "binomial" , type.measure = "auc",alpha=1, nfolds=5)
lasso_pred <- predict(lasso_model, newx=data.matrix(test_dataset[,-length(test_dataset)]),
s=lasso_model$lambda.min, type= "class", levels=c(1,0))
lasso_pred_resp <- predict(lasso_model, s="lambda.1se", newx=data.matrix(test_dataset[,-length(test_dataset)]), type="response", levels=c(1,0))
threshold <- 0.5 # or whatever threshold you use
pred <- ifelse(lasso_pred_resp>threshold, 1, 0)
table(lasso_pred, pred)
# pred
# lasso_pred 0 1
# 0 11 95
# 1 76 10
Я понятия не имею, почему это происходит ... Любой помощь будет принята с благодарностью.