#!/usr/bin/env python
import numpy as np
# example data
mu = np.arange(10).reshape(2,5)
nu = np.arange(15).reshape(3,5) + 20
# get array sizes
nl, nk = mu.shape
nj, nk_ = nu.shape
assert(nk == nk_)
# get arrays with dimensions (nj, nk, nl)
# in the case of mu3d, we need to add a slowest varying dimension
# so (after transposing) this can be done by cycling through the data
# nj times along the slowest existing axis and then reshaping
mu3d = np.concatenate((mu.transpose(),) * nj).reshape(nj, nk, nl)
# in the case of nu3d, we need to add a new fastest varying dimension
# so this can be done by repeating each element nl times, and again it
# needs reshaping
nu3d = nu.repeat(nl).reshape(nj, nk, nl)
# now just multiple element by element
new_array = mu3d * nu3d
print(new_array)
Выдает:
>>> mu
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
>>> nu
array([[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29],
[30, 31, 32, 33, 34]])
>>> nj, nk, nl
(3, 5, 2)
>>> mu3d
array([[[0, 5],
[1, 6],
[2, 7],
[3, 8],
[4, 9]],
[[0, 5],
[1, 6],
[2, 7],
[3, 8],
[4, 9]],
[[0, 5],
[1, 6],
[2, 7],
[3, 8],
[4, 9]]])
>>> nu3d
array([[[20, 20],
[21, 21],
[22, 22],
[23, 23],
[24, 24]],
[[25, 25],
[26, 26],
[27, 27],
[28, 28],
[29, 29]],
[[30, 30],
[31, 31],
[32, 32],
[33, 33],
[34, 34]]])
>>> new_array
array([[[ 0, 100],
[ 21, 126],
[ 44, 154],
[ 69, 184],
[ 96, 216]],
[[ 0, 125],
[ 26, 156],
[ 54, 189],
[ 84, 224],
[116, 261]],
[[ 0, 150],
[ 31, 186],
[ 64, 224],
[ 99, 264],
[136, 306]]])