Используя пример из pandas
найденных документов здесь , следующая индексация работает отлично, в результате получается pd.Series
:
import pandas as pd
tuples = [(1, 'red'), (1, 'blue'),
(2, 'red'), (2, 'blue')]
columns = pd.MultiIndex.from_tuples(tuples, names=('number', 'color'))
asdf = pd.DataFrame(columns=columns, index=[0, 1])
asdf.loc[:, (1, 'red')]
, но если я изменю код, немного, исключив один уровень, та же индексация не работает:
import pandas as pd
tuples = [(1,), (2,)]
columns = pd.MultiIndex.from_tuples(tuples, names=['number'])
asdf = pd.DataFrame(columns=columns, index=[0, 1])
asdf.loc[:, (1,)]
IndexError Traceback (most recent call last)
<ipython-input-43-d55399a979fa> in <module>
----> 1 asdf.loc[:, (1,)]
/opt/conda/lib/python3.8/site-packages/pandas/core/indexing.py in __getitem__(self, key)
1760 except (KeyError, IndexError, AttributeError):
1761 pass
-> 1762 return self._getitem_tuple(key)
1763 else:
1764 # we by definition only have the 0th axis
/opt/conda/lib/python3.8/site-packages/pandas/core/indexing.py in _getitem_tuple(self, tup)
1270 def _getitem_tuple(self, tup: Tuple):
1271 try:
-> 1272 return self._getitem_lowerdim(tup)
1273 except IndexingError:
1274 pass
/opt/conda/lib/python3.8/site-packages/pandas/core/indexing.py in _getitem_lowerdim(self, tup)
1371 # we may have a nested tuples indexer here
1372 if self._is_nested_tuple_indexer(tup):
-> 1373 return self._getitem_nested_tuple(tup)
1374
1375 # we maybe be using a tuple to represent multiple dimensions here
/opt/conda/lib/python3.8/site-packages/pandas/core/indexing.py in _getitem_nested_tuple(self, tup)
1451
1452 current_ndim = obj.ndim
-> 1453 obj = getattr(obj, self.name)._getitem_axis(key, axis=axis)
1454 axis += 1
1455
/opt/conda/lib/python3.8/site-packages/pandas/core/indexing.py in _getitem_axis(self, key, axis)
1963 # fall thru to straight lookup
1964 self._validate_key(key, axis)
-> 1965 return self._get_label(key, axis=axis)
1966
1967
/opt/conda/lib/python3.8/site-packages/pandas/core/indexing.py in _get_label(self, label, axis)
620 # see GH5667
621 return self.obj._xs(label, axis=axis)
--> 622 elif isinstance(label, tuple) and isinstance(label[axis], slice):
623 raise IndexingError("no slices here, handle elsewhere")
624
IndexError: tuple index out of range
Более того, индексирование его как asdf.loc[:, 1]
выдает TypeError
, и, кроме того, индексация его как asdf.loc[:, ((1,),)]
работает, но результат будет pd.DataFrame
, а не pd.Series
!
Почему это происходит? Заранее большое спасибо!
PS: Меня интересует «абстрагирование» моего кода от подобных проблем (один уровень против нескольких уровней в pd.DataFrame.columns
). В компании, где я работаю, иногда мы получаем данные о клиентах там, где требуется несколько уровней, но в других случаях нужен только один уровень.