У меня есть 5 наборов данных, представленных в 5 разных цветных полосах ошибок в следующем коде (я не показывал заглавные буквы). errorbar plot
отображается в логарифмическом масштабе c по обеим осям. Используя curvefit
, я пытаюсь найти лучшую линейную регрессию, проходящую через эти полосы ошибок. Тем не менее, похоже, что уравнение степенного закона, которое я определил для соответствия, нелегко найти наиболее подходящий наклон для 5 линий. Я ожидаю, что все 5 цветных линий должны быть прямыми с отрицательными наклонами. Мне было трудно понять, какую начальную точку p0 следует указать в процессе подбора кривой. Даже с моими первоначальными значениями, которые трудно угадать, я все еще не вижу всех прямых линий, а некоторые из них слишком расходятся с моими точками. В чем проблема?
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
x_mean = [2.81838293e+20, 5.62341325e+20, 1.12201845e+21, 2.23872114e+21, 4.46683592e+21, 8.91250938e+21, 1.77827941e+22]
mean_1 = [52., 21.33333333, 4., 1., 0., 0., 0.]
mean_2 = [57., 16.66666667, 5.66666667, 2.33333333, 0.66666667, 0., 0.33333333]
mean_3 = [67.33333333, 20., 8.66666667, 3., 0.66666667, 1., 0.33333333]
mean_4 = [79.66666667, 25., 8.33333333, 3., 1., 0., 0.]
mean_5 = [54.66666667, 16.66666667, 8.33333333, 2., 2., 1., 0.]
error_1 = [4.163332, 2.66666667, 1.15470054, 0.57735027, 0., 0., 0.]
error_2 = [4.35889894, 2.3570226, 1.37436854, 0.8819171, 0.47140452, 0., 0.33333333]
error_3 = [4.7375568, 2.5819889, 1.69967317, 1., 0.47140452, 0.57735027, 0.33333333]
error_4 = [5.15320828, 2.88675135, 1.66666667, 1., 0.57735027, 0., 0.]
error_5 = [4.26874949, 2.3570226, 1.66666667, 0.81649658, 0.81649658, 0.57735027, 0.]
newX = np.logspace(20, 22.3)
def myExpFunc(x, a, b):
return a*np.power(x, b)
popt_1, pcov_1 = curve_fit(myExpFunc, x_mean, mean_1, sigma=error_1, absolute_sigma=True, p0=(4e31,-1.5))
popt_2, pcov_2 = curve_fit(myExpFunc, x_mean, mean_2, sigma=error_2, absolute_sigma=True, p0=(4e31,-1.5))
popt_3, pcov_3 = curve_fit(myExpFunc, x_mean, mean_3, sigma=error_3, absolute_sigma=True, p0=(4e31,-1.5))
popt_4, pcov_4 = curve_fit(myExpFunc, x_mean, mean_4, sigma=error_4, absolute_sigma=True, p0=(4e31,-1.5))
popt_5, pcov_5 = curve_fit(myExpFunc, x_mean, mean_5, sigma=error_5, absolute_sigma=True, p0=(4e31,-1.5))
fig, ax1 = plt.subplots(figsize=(3,5))
ax1.errorbar(x_mean, mean_1, yerr=error_1, ecolor = 'magenta', fmt= 'mo', ms=0, elinewidth = 1, capsize = 0, capthick=0)
ax1.errorbar(x_mean, mean_2, yerr=error_2, ecolor = 'red', fmt= 'ro', ms=0, elinewidth = 1, capsize = 0, capthick=0)
ax1.errorbar(x_mean, mean_3, yerr=error_3, ecolor = 'orange', fmt= 'yo', ms=0, elinewidth = 1, capsize = 0, capthick=0)
ax1.errorbar(x_mean, mean_4, yerr=error_4, ecolor = 'green', fmt= 'go', ms=0, elinewidth = 1, capsize = 0, capthick=0)
ax1.errorbar(x_mean, mean_5, yerr=error_5, ecolor = 'blue', fmt= 'bo', ms=0, elinewidth = 1, capsize = 0, capthick=0)
ax1.plot(newX, myExpFunc(newX, *popt_1), 'm-', label='{:.2f} \u00B1 {:.2f}'.format(popt_1[1], pcov_1[1,1]**0.5))
ax1.plot(newX, myExpFunc(newX, *popt_2), 'r-', label='{:.2f} \u00B1 {:.2f}'.format(popt_2[1], pcov_2[1,1]**0.5))
ax1.plot(newX, myExpFunc(newX, *popt_3), 'y-', label='{:.2f} \u00B1 {:.2f}'.format(popt_3[1], pcov_3[1,1]**0.5))
ax1.plot(newX, myExpFunc(newX, *popt_4), 'g-', label='{:.2f} \u00B1 {:.2f}'.format(popt_4[1], pcov_4[1,1]**0.5))
ax1.plot(newX, myExpFunc(newX, *popt_5), 'b-', label='{:.2f} \u00B1 {:.2f}'.format(popt_5[1], pcov_5[1,1]**0.5))
ax1.legend(handlelength=0, loc='upper right', ncol=1, fontsize=10)
ax1.set_xlim([2e20, 3e22])
ax1.set_ylim([2e-1, 1e2])
ax1.set_xscale("log")
ax1.set_yscale("log")
plt.show()