Вы не указали как вы используете DA SH. В этом примере я использую JupyterDA SH в JupyterLab (и да, это потрясающе!).
Следующий график создается фрагментом кода ниже. Фрагмент использует функцию обратного вызова для изменения аргумента, который устанавливает количество полиномиальных функций nFeatures
в:
model = make_pipeline(PolynomialFeatures(nFeatures), LinearRegression())
model.fit(np.array(x).reshape(-1, 1), y)
Я использую d cc .Slider для изменения значения.
Настройка по умолчанию с nFeatures = 1
Selected setup using slider with nFeatures = 3
введите описание изображения здесь
Полный код:
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline
from IPython.core.debugger import set_trace
# Load Data
df = px.data.tips()
# Build App
app = JupyterDash(__name__)
app.layout = html.Div([
html.H1("ScikitLearn: Polynomial features"),
dcc.Graph(id='graph'),
html.Label([
"Set number of features",
dcc.Slider(id='PolyFeat',
min=1,
max=6,
marks={i: '{}'.format(i) for i in range(10)},
value=1,
)
]),
])
# Define callback to update graph
@app.callback(
Output('graph', 'figure'),
[Input("PolyFeat", "value")]
)
def update_figure(nFeatures):
global model
# data
df = px.data.tips()
x=df['total_bill']
y=df['tip']
# model
model = make_pipeline(PolynomialFeatures(nFeatures), LinearRegression())
model.fit(np.array(x).reshape(-1, 1), y)
x_reg = x.values
y_reg = model.predict(x_reg.reshape(-1, 1))
df['model']=y_reg
# figure setup and trace for observations
fig = go.Figure()
fig.add_traces(go.Scatter(x=df['total_bill'], y=df['tip'], mode='markers', name = 'observations'))
# trace for polynomial model
df=df.sort_values(by=['model'])
fig.add_traces(go.Scatter(x=df['total_bill'], y=df['model'], mode='lines', name = 'model'))
# figure layout adjustments
fig.update_layout(yaxis=dict(range=[0,12]))
fig.update_layout(xaxis=dict(range=[0,60]))
print(df['model'].tail())
return(fig)
# Run app and display result inline in the notebook
app.enable_dev_tools(dev_tools_hot_reload =True)
app.run_server(mode='inline', port = 8070, dev_tools_ui=True, #debug=True,
dev_tools_hot_reload =True, threaded=True)