Я использую TensorFlow-2.2, tensorflow_model_optimization и Python 3.8. Я пытаюсь квантовать и обучать нейронную сеть L eNet -300-100 Dense, которая содержит разреженность 91,3375%. Это означает, что 91,3375% весов равны нулю. Я следил за учебником Quantization TF и хотел обучить такую разреженную сеть, которая была квантована с помощью tf.GradientTape , а не q_aware_model.fit () .
Если вы посмотрите на пример кода , соответствующие фрагменты кода:
quantize_model = tfmot.quantization.keras.quantize_model
# q_aware stands for for quantization aware.
q_aware_model = quantize_model(model)
# 'quantize_model' requires recompilation-
q_aware_model.compile(
optimizer = tf.keras.optimizers.Adam(lr = 0.0012),
loss=tf.keras.losses.categorical_crossentropy,
metrics=['accuracy']
)
# Define 'train_one_step()' and 'test_step()' functions here-
@tf.function
def train_one_step(model, mask_model, optimizer, x, y):
'''
Function to compute one step of gradient descent optimization
'''
with tf.GradientTape() as tape:
# Make predictions using defined model-
y_pred = model(x)
# Compute loss-
loss = loss_fn(y, y_pred)
# Compute gradients wrt defined loss and weights and biases-
grads = tape.gradient(loss, model.trainable_variables)
# type(grads)
# list
# List to hold element-wise multiplication between-
# computed gradient and masks-
grad_mask_mul = []
# Perform element-wise multiplication between computed gradients and masks-
for grad_layer, mask in zip(grads, mask_model.trainable_weights):
grad_mask_mul.append(tf.math.multiply(grad_layer, mask))
# Apply computed gradients to model's weights and biases-
optimizer.apply_gradients(zip(grad_mask_mul, model.trainable_variables))
# Compute accuracy-
train_loss(loss)
train_accuracy(y, y_pred)
return None
@tf.function
def test_step(model, optimizer, data, labels):
"""
Function to test model performance
on testing dataset
"""
predictions = model(data)
t_loss = loss_fn(labels, predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
return None
# Train model using 'GradientTape'-
# Initialize parameters for Early Stopping manual implementation-
# best_val_loss = 100
# loc_patience = 0
for epoch in range(num_epochs):
if loc_patience >= patience:
print("\n'EarlyStopping' called!\n")
break
# Reset the metrics at the start of the next epoch
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
for x, y in train_dataset:
train_one_step(q_aware_model, mask_model, optimizer, x, y)
for x_t, y_t in test_dataset:
test_step(q_aware_model, optimizer, x_t, y_t)
template = 'Epoch {0}, Loss: {1:.4f}, Accuracy: {2:.4f}, Test Loss: {3:.4f}, Test Accuracy: {4:4f}'
'''
# 'i' is the index for number of pruning rounds-
history_main[i]['accuracy'][epoch] = train_accuracy.result() * 100
history_main[i]['loss'][epoch] = train_loss.result()
history_main[i]['val_loss'][epoch] = test_loss.result()
history_main[i]['val_accuracy'][epoch] = test_accuracy.result() * 100
'''
print(template.format(
epoch + 1, train_loss.result(),
train_accuracy.result()*100, test_loss.result(),
test_accuracy.result()*100)
)
# Count number of non-zero parameters in each layer and in total-
# print("layer-wise manner model, number of nonzero parameters in each layer are: \n")
model_sum_params = 0
for layer in winning_ticket_model.trainable_weights:
# print(tf.math.count_nonzero(layer, axis = None).numpy())
model_sum_params += tf.math.count_nonzero(layer, axis = None).numpy()
print("Total number of trainable parameters = {0}\n".format(model_sum_params))
# Code for manual Early Stopping:
if np.abs(test_loss.result() < best_val_loss) >= minimum_delta:
# update 'best_val_loss' variable to lowest loss encountered so far-
best_val_loss = test_loss.result()
# reset 'loc_patience' variable-
loc_patience = 0
else: # there is no improvement in monitored metric 'val_loss'
loc_patience += 1 # number of epochs without any improvement
Выдает следующую ошибку:
- -------------------------------------------------- ------------------------ InvalidArgumentError Traceback (последний вызов последний) через 19 20 для x, y в train_dataset: ---> 21 train_one_step (q_aware_model , mask_model, optimizer, x, y) 22 23
~ / .local / lib / python3 .8 / site-packages / tensorflow / python / eager / def_function.py в вызов (self, * args, ** kwds) 578 xla_context.Exit () 579 else: -> 580 result = self._call (* args, ** kwds) 581 582 если tracing_count == self._get_tracing_count ():
~ / .local / lib / python3 .8 / site-packages / tensorflow / python / eager / def_function.py in _call (self, * args, ** kwds) 642 # Подъем успешно ed, поэтому переменные инициализируются, и мы можем запустить функцию без состояния 643 #. -> 644 return self._stateless_fn (* args, ** kwds) 645 else: 646 canon_args, canon_kwds = \
~ / .local / lib / python3 .8 / site-packages / tensorflow / python / eager / function.py в call (self, * args, ** kwargs) 2418 с self._lock: 2419 graph_function, args, kwargs = self._maybe_define_function (args, kwargs) -> 2420 return graph_function._filtered_call (args, kwargs) # pylint: disable = protected-access 2421 2422 @ property
~ / .local / lib / python3 .8 / site-packages / tensorflow / python / eager / function.py в _filtered_call (self, args, kwargs) 1659 args
и kwargs
. 1660 "" "-> 1661 return self._call_flat (1662 (t вместо t в nest.flatten ((args, kwargs), expand_composites = True) 1663 если isinstance (t, (ops.Tensor,
~ / .local / lib / python3 .8 / site-packages / tensorflow / python / eager / function.py в _call_flat (self, args, capture_inputs , cancellation_manager) 1743 и executeing_eagerly): 1744 # Лента не просматривается; перейти к запуску функции. -> 1745 вернуть self._build_call_outputs (self._inference_function.call (1746 ctx, args, cancellation_manager = cancellation_manager)) 1747 forward_backward = self._select_forward_and_backward_functions (
~ / .local / lib / python3 .8 / site-packages / tensorflow / python / eager / function.py в вызове (self, ctx, args, cancellation_manager) 591 with _InterpolateFunctionError (self): 592, если cancellation_manager - None: -> 593 output = execute.execute (594 str (self.signature.name), 595 num_outputs = self._num_outputs,
~ / .local / lib / python3 .8 / site-packages / tensorflow / python / eager / execute.py в quick_execute (op_name, num_outputs, inputs, attrs, ctx, name) 57 try: 58 ctx.ensure_initialized () ---> 59 tenors = pywrap_tfe.TFE_Py_Execute (ctx._handle, device_name, op_name, 60 inputs, attrs, num_outputs) 61 кроме core._NotOkStatusException как e:
InvalidArgumentError: var и grad не имеют одинаковой формы [10] [10] 100,10] [[узел Adam / Adam / update_4 / ResourceApplyAdam (определено на: 29)]] [Op: __ inference_train_one_step_20360]
Ошибки могли быть вызваны операцией ввода. Операции с источником ввода подключены к узел Adam / Adam / update_4 / ResourceApplyAdam: Mul_4 (определено в: 26) последовательность / Quant_dense_2 / BiasAdd / ReadVariableOp / resource (определено в /home/arjun/.local/lib/python3. 8 / site-packages / tensorflow_model_optimization / python / core / quantization / keras / quantize_wrapper.py: 162)
Стек вызовов функций: train_one_step
Есть ли способ объединить модель TF Квантование вместе с tf.GradientTape?
Спасибо!