Код хорошо находит символы, но выводит их не по порядку Я нашел фрагмент кода, который должен решить эту проблему, но не могу - после нахождения контуров с помощью contours = cv2.findContours () используйте -
boundary=[]
for c,cnt in enumerate(contours):
x,y,w,h = cv2.boundingRect(cnt)
boundary.append((x,y,w,h))
count=np.asarray(boundary)
max_width = np.sum(count[::, (0, 2)], axis=1).max()
max_height = np.max(count[::, 3])
nearest = max_height * 1.4
ind_list=np.lexsort((count[:,0],count[:,1]))
c=count[ind_list]
Найти символы
img = "C:\\Users\\dennn\\PycharmProjects\\untitled2\\output.jpg" dir = os.curdir
path = os.path.join(dir,img)
raw_image = cv2.imread(path,0)
cv2.imshow("original",raw_image)
plt.subplot(2,3,1)
plt.title("Original")
plt.imshow(raw_image,'gray')
plt.xticks([]),plt.yticks([]);
sm_image = cv2.blur(raw_image,(8,8))
cv2.imshow("smoothed",sm_image)
plt.subplot(2,3,2)
plt.title("Smoothed")
plt.imshow(sm_image,'gray')
plt.xticks([]),plt.yticks([]);
#cv2.imshow("smoothed",sm_image)
ret,bw_image = cv2.threshold(sm_image,160,255,cv2.THRESH_BINARY_INV)
cv2.imshow("thresholded",bw_image)
plt.subplot(2,3,3)
plt.title("Thresholded")
plt.imshow(bw_image,'gray')
plt.xticks([]),plt.yticks([]);
kernel = np.ones((4,4),np.uint8)
er_image = cv2.erode(bw_image,kernel)
cv2.imshow("eroded",er_image)
plt.subplot(2,3,4)
plt.title("Eroded")
plt.imshow(er_image,'gray')
plt.xticks([]),plt.yticks([]);
kernel = np.ones((2,2),np.uint8)
di_image = cv2.dilate(er_image,kernel)
cv2.imshow("dilated",di_image)
plt.title("Dilated")
plt.subplot(2,3,5)
plt.imshow(di_image,'gray')
plt.xticks([]),plt.yticks([]);
mo_image = di_image.copy()
contour0 =
cv2.findContours(mo_image.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
contours = [cv2.approxPolyDP(cnt,3,True) for cnt in contour0[0]]
maxArea = 0
rect = []
for ctr in contours:
maxArea = max(maxArea, cv2.contourArea(ctr))
if img == "C:\\Users\\dennn\\PycharmProjects\\untitled2\\output.jpg":
areaRatio = 0.05
for ctr in contours:
if cv2.contourArea(ctr) > maxArea * areaRatio:
rect.append(cv2.boundingRect(cv2.approxPolyDP(ctr, 1, True)))
symbols = []
for i in rect:
x = i[0]
y = i[1]
w = i[2]
h = i[3]
p1 = (x, y)
p2 = (x + w, y + h)
cv2.rectangle(mo_image, p1, p2, 255, 2)
image = cv2.resize(mo_image[y:y + h, x:x + w], (32, 32))
symbols.append(image.reshape(1024, ).astype("uint8"))
testset_data = np.array(symbols)
cv2.imshow("segmented", mo_image)
plt.subplot(2, 3, 6)
plt.title("Segmented")
plt.imshow(mo_image, 'gray')
plt.xticks([]), plt.yticks([]);
# plt.show()
# garbage collection
cv2.destroyAllWindows()
plt.close()
# show glyphs
for i in range(len(symbols)):
image = np.zeros(shape=(64,64))
image[15:47,15:47] = symbols[i].reshape((32,32))
cv2.imshow("sym",image)
cv2.waitKey(0)
cv2.destroyAllWindows()
plt.close()