Мне сложно определить масштабирование ковариационной матрицы в numpy polyfit.
В документации я читал, что коэффициент масштабирования до go из немасштабированный до масштабированной ковариационной матрицы:
chi2 / sqrt(N - DOF).
В приведенном ниже коде кажется, что коэффициент масштабирования на самом деле
chi2 / DOF
Вот мой код
# Generate synthetically the data
# True parameters
import numpy as np
true_slope = 3
true_intercept = 7
x_data = np.linspace(-5, 5, 30)
# The y-data will have a noise term, to simulate imperfect observations
sigma = 1
y_data = true_slope * np.linspace(-5, 5, 30) + true_intercept
y_obs = y_data + np.random.normal(loc=0.0, scale=sigma, size=x_data.size)
# Here I generate artificially some unequal uncertainties
# (even if there is no reason for them to be so)
y_uncertainties = sigma * np.random.normal(loc=1.0, scale=0.5*sigma, size=x_data.size)
# Make the fit
popt, pcov = np.polyfit(x_data, y_obs, 1, w=1/y_uncertainties, cov='unscaled')
popt, pcov_scaled = np.polyfit(x_data, y_obs, 1, w=1/y_uncertainties, cov=True)
my_scale_factor = np.sum((y_obs - popt[0] * x_data - popt[1])**2 / y_uncertainties**2)\
/ (len(y_obs)-2)
scale_factor = pcov_scaled[0,0] / pcov[0,0]
Если я запускаю код, я вижу, что фактический коэффициент масштабирования равен chi2 / DOF, а не значение, указанное в документации. Это правда или я что-то упустил?
У меня еще вопрос. Почему предлагается использовать только обратную ошибку y-данных вместо квадрата обратной величины ошибок y-данных для весов в случае, если неопределенности распределены нормально?
Редактировать, чтобы добавить данные, сгенерированные запуском кода
x_data = array([-5. , -4.65517241, -4.31034483, -3.96551724, -3.62068966,
-3.27586207, -2.93103448, -2.5862069 , -2.24137931, -1.89655172,
-1.55172414, -1.20689655, -0.86206897, -0.51724138, -0.17241379,
0.17241379, 0.51724138, 0.86206897, 1.20689655, 1.55172414,
1.89655172, 2.24137931, 2.5862069 , 2.93103448, 3.27586207,
3.62068966, 3.96551724, 4.31034483, 4.65517241, 5. ])
y_obs = array([-7.27819725, -8.41939411, -3.9089926 , -5.24622589, -3.78747379,
-1.92898727, -1.375255 , -1.84388812, -0.37092441, 0.27572306,
2.57470918, 3.860485 , 4.62580789, 5.34147103, 6.68231985,
7.38242258, 8.28346559, 9.46008873, 10.69300274, 12.46051285,
13.35049975, 13.28279961, 14.31604781, 16.8226239 , 16.81708308,
18.64342284, 19.37375515, 19.6714002 , 20.13700708, 22.72327533])
y_uncertainties = array([ 0.63543112, 1.07608924, 0.83603265, -0.03442888, -0.07049299,
1.30864191, 1.36015322, 1.42125414, 1.04099854, 1.20556608,
0.43749964, 1.635056 , 1.00627014, 0.40512511, 1.19638787,
1.26230966, 0.68253139, 0.98055035, 1.01512232, 1.83910276,
0.96763007, 0.57373151, 1.69358475, 0.62068133, 0.70030971,
0.34648312, 1.85234844, 1.18687269, 1.23841579, 1.19741206])
С этими данными я получаю, что scale_factor = 1.6534129347542432
, my_scale_factor = 1.653412934754234
и что «номинальный» масштабный коэффициент, указанный в документации. , т.е.
nominal_scale_factor = np.sum((y_obs - popt[0] * x_data - popt[1])**2 /\
y_uncertainties**2) / np.sqrt(len(y_obs) - len(y_obs) + 2)
имеет значение nominal_scale_factor = 32.73590595145554
PS. моя numpy версия - 1.18.5 3.7.7 (default, May 6 2020, 11:45:54) [MSC v.1916 64 bit (AMD64)]