Схема файловой системы "[локальная]" не реализована в Google Colab TPU - PullRequest
3 голосов
/ 13 июля 2020

Я использую среду выполнения TPU в Google Colab, но испытываю проблемы с чтением файлов (не уверен). Я инициализировал TPU, используя:

import tensorflow as tf
import os
import tensorflow_datasets as tfds

resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
tf.config.experimental_connect_to_cluster(resolver)
# This is the TPU initialization code that has to be at the beginning.
tf.tpu.experimental.initialize_tpu_system(resolver)
print("All devices: ", tf.config.list_logical_devices('TPU'))

У меня много изображений в папке в хранилище Google Colab (например, '/content/train2017/000000000009.jpg'). Я запускаю следующий код:

import tensorflow as tf
def load_image(image_path):
    img = tf.io.read_file(image_path)
    img = tf.image.decode_jpeg(img, channels=3)
    img = tf.image.resize(img, (299, 299))
    img = tf.keras.applications.inception_v3.preprocess_input(img)
    return img, image_path
load_image('/content/train2017/000000000009.jpg')

Но я получаю следующую ошибку:

---------------------------------------------------------------------------
UnimplementedError                        Traceback (most recent call last)
<ipython-input-33-a7fbb45f3b76> in <module>()
----> 1 load_image('/content/train2017/000000000009.jpg')

5 frames
<ipython-input-7-862c73d29b96> in load_image(image_path)
      2     img = tf.io.read_file(image_path)
      3     img = tf.image.decode_jpeg(img, channels=3)
----> 4     img = tf.image.resize(img, (299, 299))
      5     img = tf.keras.applications.inception_v3.preprocess_input(img)
      6     return img, image_path

/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/image_ops_impl.py in resize_images_v2(images, size, method, preserve_aspect_ratio, antialias, name)
   1515       preserve_aspect_ratio=preserve_aspect_ratio,
   1516       name=name,
-> 1517       skip_resize_if_same=False)
   1518 
   1519 

/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/image_ops_impl.py in _resize_images_common(images, resizer_fn, size, preserve_aspect_ratio, name, skip_resize_if_same)
   1183   with ops.name_scope(name, 'resize', [images, size]):
   1184     images = ops.convert_to_tensor(images, name='images')
-> 1185     if images.get_shape().ndims is None:
   1186       raise ValueError('\'images\' contains no shape.')
   1187     # TODO(shlens): Migrate this functionality to the underlying Op's.

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py in get_shape(self)
   1071   def get_shape(self):
   1072     """Alias of Tensor.shape."""
-> 1073     return self.shape
   1074 
   1075   def _shape_as_list(self):

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py in shape(self)
   1065         self._tensor_shape = tensor_shape.TensorShape(self._shape_tuple())
   1066       except core._NotOkStatusException as e:
-> 1067         six.raise_from(core._status_to_exception(e.code, e.message), None)
   1068 
   1069     return self._tensor_shape

/usr/local/lib/python3.6/dist-packages/six.py in raise_from(value, from_value)

UnimplementedError: File system scheme '[local]' not implemented (file: '/content/train2017/000000000009.jpg')

Как мне ее решить? Нашел что-то вроде ведра gs, но оно платное. Есть ли другой способ решить эту проблему?

Ответы [ 2 ]

3 голосов
/ 13 июля 2020

Облачные TPU могут получать доступ только к данным в GCS, поскольку зарегистрирована только файловая система GCS. Пожалуйста, см .: https://cloud.google.com/tpu/docs/troubleshooting#cannot_use_local_filesystem для получения дополнительной информации.

Хотя для контрольных точек, начиная с версии TF 2.3, вы должны иметь возможность использовать опцию experimental_io_device='/job:localhost' (https://www.tensorflow.org/api_docs/python/tf/train/CheckpointOptions) для хранения / загрузки ваших контрольных точек в среду выполнения Colab и из нее. Даже с этим API вам нужно будет загружать данные из GCS.

Пример:

checkpoint = tf.train.Checkpoint(model=model)
local_device_option = tf.train.CheckpointOptions(experimental_io_device="/job:localhost")
checkpoint.write(checkpoint_path, options=local_device_option)
1 голос
/ 29 июля 2020

Для загрузки файла из локального файла при использовании TPU - я читаю их как обычно python file.read () (не tf.io). В вашем случае:

def load_image(image_path):
    with open(image_path, "rb") as local_file: # <= change here
      img = local_file.read()
    img = tf.image.decode_jpeg(img, channels=3)
    img = tf.image.resize(img, (299, 299))
    img = tf.keras.applications.inception_v3.preprocess_input(img)
    return img, image_path
load_image('/content/train2017/000000000009.jpg')
...