Я развернул пользовательскую модель Pytorch на платформе Google AI для прогнозирования, но когда я пытаюсь сделать запрос на прогноз с данными изображения с помощью инструментов gcloud
, я получаю в ответ следующую ошибку:
{
"error": "Prediction failed: unknown error."
}
Я попытался закодировать данные своего изображения в формате b64 или поместить его в многомерный массив python, выполнив следующие действия:
pil_im = Image.open('Pic512.png')
pil_im = pil_im.resize((224,224)).convert('RGB')
im_arr = np.asarray(pil_im)
py_arr = im_arr.tolist()
json_instance_1 = {'instances': py_arr}
with open('json_instance_1.json', 'w') as f:
json.dump(json_instance_1, f)
Я преобразовал его в b64 вот так, после соответствующим образом скорректировав свой код Predictor:
with open('Pic512.png', 'rb') as f:
byte_im = f.read()
json_instance = {'instances': {'b64': base64.b64encode(byte_im).decode()}}
with open('json_instance.json', 'w') as f:
json.dump(json_instance, f)
Я пробовал выполнять преобразование с использованием разных форматов файлов и аналогичных методов, но все они выдают одну и ту же ошибку.
Мой модуль прогнозирования:
from facenet_pytorch import MTCNN, InceptionResnetV1, extract_face
import torch
from torchvision import transforms
from torch.nn import functional as F
from PIL import Image
# from sklearn.externals import joblib
import numpy as np
import os
import io
import base64
class MyPredictor(object):
"""An example Predictor for an AI Platform custom prediction routine."""
def __init__(self, model, preprocessor, device):
"""Stores artifacts for prediction. Only initialized via `from_path`.
"""
self._resnet = model
self._mtcnn_mult = preprocessor
self._device = device
self.get_std_tensor = transforms.Compose([
np.float32,
np.uint8,
transforms.ToTensor(),
])
self.tensor2pil = transforms.ToPILImage(mode='RGB')
self.trans_resnet = transforms.Compose([
transforms.Resize((100, 100)),
np.float32,
transforms.ToTensor()
])
def predict(self, instances, **kwargs):
pil_transform = transforms.Resize((512, 512))
imarr = np.uint8(np.array(instances))
# img_bytes_string = io.BytesIO(base64.b64decode(instances))
pil_im = Image.fromarray(imarr)
# pil_im = Image.open(img_bytes_string)
image = pil_im.convert('RGB')
pil_im_512 = pil_transform(image)
boxes, _ = self._mtcnn_mult.detect(pil_im_512)
box = boxes[0]
face_tensor = extract_face(pil_im_512, box, margin=40)
std_tensor = self.get_std_tensor(face_tensor.permute(1, 2, 0))
cropped_pil_im = self.tensor2pil(std_tensor)
face_tensor = self.trans_resnet(cropped_pil_im)
face_tensor4d = face_tensor.unsqueeze(0)
face_tensor4d = face_tensor4d.to(self._device)
self._resnet.eval()
prediction = self._resnet(face_tensor4d)
preds = F.softmax(prediction, dim=1).detach().numpy().reshape(-1)
print('probability of (class1, class2) = ({:.4f}, {:.4f})'.format(preds[0], preds[1]))
return {'probs':preds.tolist()}
@classmethod
def from_path(cls, model_dir):
device_path = os.path.join(model_dir, 'device_cpu.pt')
device = torch.load(device_path)
model_path = os.path.join(model_dir, 'FullResNetRefinedExtra_no_norm_100x100_8634.pt')
classifier = torch.load(model_path, map_location=device)
mtcnn_path = os.path.join(model_dir, 'mtcnn_mult.pt')
mtcnn_mult = torch.load(mtcnn_path)
return cls(classifier, mtcnn_mult, device)
Когда я тестирую класс локально, все работает, поэтому я предполагаю, что это проблема, связанная с сериализацией и десериализацией на стороне Google Platform. Как я могу решить эту проблему?