Проблема с исследованием неисследованных узлов Астар - Python - PullRequest
0 голосов
/ 05 августа 2020

Я немного новичок, когда дело доходит до python, и я пытаюсь реализовать алгоритм поиска Astar, и я сталкиваюсь с проблемами, когда дело доходит до обратного отслеживания моего поиска и изучения неисследованных узлов. Отслеживание с возвратом сработало для меня только один раз, и я понятия не имею, почему он не продолжает исследовать неисследованные узлы.

Пока в алгоритме: Узел (соседи):: 1 (2,12,1363) -> 2 ( 1,13,48) -> 13 (2): 2 (1,13,48) -> 48 (2)

Таким образом, алгоритм никогда не смотрит на других соседей узла 1, но он действительно смотрел для других соседей узла 2 я понятия не имею, почему. Буду признателен за любую помощь! Заранее спасибо!

Функция, в которой, похоже, возникают мои проблемы:

def distance(startnode, endnode, graphone):
    """computes the distance between two vertices"""
    startNeighbors = startnode.getNeighbors(graphone)
    startWeights = startnode.getWeights()
    startWeights.sort()
    index = startWeights.index(min(startWeights))
    dist.add(startWeights[index])
    endIndex = endnode.index
    path.add(startnode.index)
    startNeighborsIndex = []
    for number in startNeighbors:
        startNeighborsIndex.append(number.index)
    
    if endIndex in startNeighborsIndex: 
        return path.add(endnode.index)
    elif startNeighborsIndex[index] in path and len(startNeighborsIndex) > 1: #Backtrack
        i = 0
        for item in startNeighborsIndex:
            if item not in path:
                return distance(graphone.getVertex(startNeighborsIndex[i]),endnode,graphone)
            i = i + 1
        # if index + 1 < len(startNeighbors)-1:
        #     return distance(graph.getVertex(startNeighbors[index+1]),n2,graph)
        # elif index + 1 == len(startNeighbors):
        #     return distance(graph.getVertex(startNeighbors[index]),n2,graph)
        # elif index + 1 > len(startNeighbors)-1:
        #     return distance(graph.getVertex(startNeighbors[index-1]),n2,graph)
        # else:
        #     return distance(graph.getVertex(startNeighbors[len(startNeighbors)-1]),n2,graph)
        
    else: 
        return distance(graphone.getVertex(startNeighborsIndex[index]),endnode,graphone)

Полный код:

from abc import ABCMeta, abstractmethod
from heapq import heappush, heappop, heapify
import fileinput
import math

Infinite = float('inf')
dist = set()
path = set()

def __main__():
    graphone = readGraph('data/USA-road-d.NY.gr')
    co = readCoordinates('data/USA-road-d.NY.co')
    startNode = graphone.getVertex(1)
    endNode = graphone.getVertex(3)
    costFunc = distance(startNode,endNode,graphone)
    # find_path(startNode,endNode,neighbors_fnct=startNode.neighbors(graphone),heuristic_cost_estimate_fnct=distance(startNode,endNode,graphone),distance_between_fnct=distance(startNode,endNode,graphone))
    find_path(startNode,endNode,neighbors_fnct=startNode.neighbors(graphone),heuristic_cost_estimate_fnct=distance(graphone),distance_between_fnct=distance(graphone))
    
def readGraph(filePath):
    n_vertices = 0
    for line in fileinput.input([filePath]):
        words = line.split(" ")
        if (words[0] == "p"):
            n_vertices = int(words[2])
    graph = Graph(n_vertices)
    for line in fileinput.input([filePath]):
        words = line.split(" ")
        if (words[0] == "a"):
            graph._addVertex(int(words[1]), int(words[2]), float(words[3]))
    return graph


# read coordinates data
def readCoordinates(filepath):
    # Start to count from 1
    coordinates = [None]
    for line in fileinput.input([filepath]):
        words = line.split(" ")
        if (words[0] == "v"):
            coordinates.append([float(words[2]), float(words[3])])
    return coordinates

class Vertex:
    # Initialization of a vertex, given a neighbor and the corresponding weight
    # Each vertex contains a list of neighbors and corresponding weights
    def __init__(self, i, neighbor_index, weight):
        self.index = i
        self.neighbors = [neighbor_index]
        self.weights = [weight]
        
    def getNeighbors(self,graphone):
        neighborList = self.neighbors
        neighbors = []
        for number in neighborList:
            neighbors.append(graphone.getVertex(number))
        return neighbors
    
    def getWeights(self):
        return self.weights
    
    # Add a neighbor with corresponding weight to the vertex
    def _addNeighbor(self, neighbor_index, weight):
        self.neighbors.append(neighbor_index)
        self.weights.append(weight)


# Graph data structure
class Graph:
    # Initializes a graph with n_vertices nodes
    # The graph contains a list of vertices
    def __init__(self, n_vertices):
        self.vertices = [None] * (n_vertices+1)
        self.num_vertices = n_vertices
    
    # Returns the i'th node
    def getVertex(self, i): #Recursion error, maximum depth reached
        if ((i > self.num_vertices) | (i <= 0)):
            raise ValueError(f'index {i} is out of bounds')
        else:
            return self.vertices[i]
    
    # Adds a new vertex to the graph
    def _addVertex(self, vertex_index, neighor_index, distance):
        if (self.vertices[vertex_index] == None):
            # Construct new vertex
            self.vertices[vertex_index] = Vertex(vertex_index, neighor_index, distance)
        else:
            # Vertex already in graph but other neighbor, add extra edge
            self.vertices[vertex_index]._addNeighbor(neighor_index, distance)

    def getTrueDistance(self,startNode, endNode):
        startIndex = startNode.index
        endIndex = endNode.index

def distance(startnode, endnode, graphone):
    """computes the distance between two vertices"""
    startNeighbors = startnode.getNeighbors(graphone)
    startWeights = startnode.getWeights()
    startWeights.sort()
    index = startWeights.index(min(startWeights))
    dist.add(startWeights[index])
    endIndex = endnode.index
    path.add(startnode.index)
    startNeighborsIndex = []
    for number in startNeighbors:
        startNeighborsIndex.append(number.index)
    
    if endIndex in startNeighborsIndex: 
        return path.add(endnode.index)
    elif startNeighborsIndex[index] in path and len(startNeighborsIndex) > 1: #Backtrack
        i = 0
        for item in startNeighborsIndex:
            if item not in path:
                return distance(graphone.getVertex(startNeighborsIndex[i]),endnode,graphone)
            i = i + 1
        # if index + 1 < len(startNeighbors)-1:
        #     return distance(graph.getVertex(startNeighbors[index+1]),n2,graph)
        # elif index + 1 == len(startNeighbors):
        #     return distance(graph.getVertex(startNeighbors[index]),n2,graph)
        # elif index + 1 > len(startNeighbors)-1:
        #     return distance(graph.getVertex(startNeighbors[index-1]),n2,graph)
        # else:
        #     return distance(graph.getVertex(startNeighbors[len(startNeighbors)-1]),n2,graph)
        
    else: 
        return distance(graphone.getVertex(startNeighborsIndex[index]),endnode,graphone)
    

class AStar:
    __metaclass__ = ABCMeta
    __slots__ = ()

    class SearchNode:
        __slots__ = ('data', 'gscore', 'fscore',
                     'closed', 'came_from', 'out_openset')

        def __init__(self, data, gscore=Infinite, fscore=Infinite):
            self.data = data
            self.gscore = gscore
            self.fscore = fscore
            self.closed = False
            self.out_openset = True
            self.came_from = None

        def __lt__(self, b):
            return self.fscore < b.fscore

    class SearchNodeDict(dict):

        def __missing__(self, k):
            v = AStar.SearchNode(k)
            self.__setitem__(k, v)
            return v

    @abstractmethod
    def heuristic_cost_estimate(self, current, goal):
        """Computes the estimated (rough) distance between a node and the goal, this method must be implemented in a subclass. The second parameter is always the goal."""
        raise NotImplementedError

    @abstractmethod
    def distance_between(self, n1, n2):
        """Gives the real distance between two adjacent nodes n1 and n2 (i.e n2 belongs to the list of n1's neighbors).
           n2 is guaranteed to belong to the list returned by the call to neighbors(n1).
           This method must be implemented in a subclass."""
        raise NotImplementedError

    @abstractmethod
    def neighbors(self, current):
        """For a given node, returns (or yields) the list of its neighbors. this method must be implemented in a subclass"""
        vertex = Vertex(node)
        raise NotImplementedError

    def is_goal_reached(self, current, goal):
        """ returns true when we can consider that 'current' is the goal"""
        return current == goal

    def reconstruct_path(self, last, reversePath=False):
        def _gen():
            current = last
            while current:
                yield current.data
                current = current.came_from
        if reversePath:
            return _gen()
        else:
            return reversed(list(_gen()))

    def astar(self, start, goal, reversePath=False):
    # def astar(start,goal,reversePath=False):
        if self.is_goal_reached(start, goal):
            return [start]
        searchNodes = AStar.SearchNodeDict()
        startNode = searchNodes[start] = AStar.SearchNode(
            start, gscore=.0, fscore=self.heuristic_cost_estimate(start,goal))
        openSet = []
        heappush(openSet, startNode)
        while openSet:
            current = heappop(openSet)
            if self.is_goal_reached(current.data, goal):
                return self.reconstruct_path(current, reversePath)
            current.out_openset = True
            current.closed = True
            #for neighbor in map(lambda n: searchNodes[n], self.neighbors[current.data]):
            for neighbor in map(lambda n: searchNodes[n], self.neighbors(current.data)):
                if neighbor.closed:
                    continue
                tentative_gscore = current.gscore + \
                    self.distance_between(current.data, neighbor.data)
                if tentative_gscore >= neighbor.gscore:
                    continue
                neighbor.came_from = current
                neighbor.gscore = tentative_gscore
                neighbor.fscore = tentative_gscore + \
                    self.heuristic_cost_estimate(neighbor.data, goal)
                if neighbor.out_openset:
                    neighbor.out_openset = False
                    heappush(openSet, neighbor)
                else:
                    heapify(openSet)
        #return self
        return None


def find_path(start, goal, neighbors_fnct, reversePath=False, heuristic_cost_estimate_fnct=lambda a, b: Infinite, distance_between_fnct=lambda a, b: 1.0, is_goal_reached_fnct=lambda a, b: a == b):
    """A non-class version of the path finding algorithm"""
    class FindPath(AStar):

        def heuristic_cost_estimate(self, current, goal):
            return heuristic_cost_estimate_fnct(current, goal)

        def distance_between(self, n1, n2):
            return distance_between_fnct(n1, n2)

        def neighbors(self, node):
            return neighbors_fnct(node)

        def is_goal_reached(self, current, goal):
            return is_goal_reached_fnct(current, goal)
    return FindPath().astar(start, goal, reversePath)

if __name__ == '__main__':
    __main__()

1 Ответ

0 голосов
/ 07 августа 2020

Я не знаю python, но в алгоритме A * один из способов обратной трассировки - это: Каждый раз, когда вы добавляете узел в открытый список, устанавливайте его «Родитель» для текущего узла. Поэтому, когда вы добавляете узел в открытый список, установите его родительский узел на Текущий узел, который является узлом, из которого он был добавлен. Затем, когда вы добавляете узлы в открытый список и узел уже существует в открытом списке, замените его родительский узел текущим узлом.

Вам следует посмотреть это видео, если вы еще этого не сделали: https://www.youtube.com/watch?v=-L-WgKMFuhE&t=445s

...