Я предполагаю, что вы хотите запустить простую модель OLS, которую в Julia можно подогнать с помощью пакета GLM
:
julia> using GLM, DataFrame
julia> mkt_rtn_arr = randn(500); stock_rtn_arr = 0.5*mkt_rtn_arr .+ rand();
julia> df = DataFrame(mkt_rtn = mkt_rtn_arr, stock_rtn = stock_rtn_arr);
julia> linear_model = lm(@formula(stock_rtn ~ mkt_rtn), df)
StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Array{Float64,1}},GLM.DensePredChol{Float64,LinearAlgebra.Cholesky{Float64,Array{Float64,2}}}},Array{Float64,2}}
stock_rtn ~ 1 + mkt_rtn
Coefficients:
──────────────────────────────────────────────────────────────────────────────
Estimate Std. Error t value Pr(>|t|) Lower 95% Upper 95%
──────────────────────────────────────────────────────────────────────────────
(Intercept) 0.616791 7.80308e-18 7.90446e16 <1e-99 0.616791 0.616791
mkt_rtn 0.5 7.78767e-18 6.42041e16 <1e-99 0.5 0.5
──────────────────────────────────────────────────────────────────────────────
Затем вы можете извлечь интересующие параметры из linear_model
:
julia> β = coef(linear_model)[2]
0.4999999999999999
julia> α = coef(linear_model)[1]
0.6167912017573035
julia> r_value = r2(linear_model)
1.0
julia> pvalues = coeftable(linear_model).cols[4]
2-element Array{Float64,1}:
0.0
0.0
julia> stderror(linear_model)
2-element Array{Float64,1}:
7.803081577574428e-18
7.787667394841443e-18
Обратите внимание, что я использовал API @formula
для запуска регрессии, которая требует помещения ваших данных в DataFrame
и, на мой взгляд, является предпочтительным способ оценки линейной модели в GLM, поскольку он обеспечивает большую гибкость при определении модели. В качестве альтернативы вы могли бы вызвать lm(X, y)
непосредственно в массиве для вашей переменной X
и переменной y
:
julia> lm([ones(length(mkt_rtn_arr)) mkt_rtn_arr], stock_rtn_arr)
LinearModel{GLM.LmResp{Array{Float64,1}},GLM.DensePredChol{Float64,LinearAlgebra.Cholesky{Float64,Array{Float64,2}}}}:
Coefficients:
─────────────────────────────────────────────────────────────────────
Estimate Std. Error t value Pr(>|t|) Lower 95% Upper 95%
─────────────────────────────────────────────────────────────────────
x1 0.616791 7.80308e-18 7.90446e16 <1e-99 0.616791 0.616791
x2 0.5 7.78767e-18 6.42041e16 <1e-99 0.5 0.5
─────────────────────────────────────────────────────────────────────
Обратите внимание, что здесь я добавил столбец единиц к массиву рыночной доходности в оцените модель с помощью точки пересечения, которую макрос @formula
сделает автоматически (аналогично тому, как это делается в R).