Я не понимаю логику или назначение вышеприведенного кода, но именно так вы можете сохранить и распечатать каждую комбинацию.
public class MakeChange {
private static int[] availableCoins = {
1, 2, 5, 10, 20, 25, 50, 100 };
public static void main(String[] args) {
Collection<CombinationResult> results = makeChange(5, 7);
for (CombinationResult r : results) {
System.out.println(
"firstWay=" + r.getFirstWay() + " : secondWay="
+ r.getSecondWay() + " --- Sum=" + r.getSum());
}
}
public static class CombinationResult {
int firstWay;
int secondWay;
CombinationResult(int firstWay, int secondWay) {
this.firstWay = firstWay;
this.secondWay = secondWay;
}
public int getFirstWay() {
return this.firstWay;
}
public int getSecondWay() {
return this.secondWay;
}
public int getSum() {
return this.firstWay + this.secondWay;
}
public boolean equals(Object o) {
boolean flag = false;
if (o instanceof CombinationResult) {
CombinationResult r = (CombinationResult) o;
flag = this.firstWay == r.firstWay
&& this.secondWay == r.secondWay;
}
return flag;
}
public int hashCode() {
return this.firstWay + this.secondWay;
}
}
public static Collection<CombinationResult> makeChange(
int amount, int currentCoin) {
Collection<CombinationResult> results =
new ArrayList<CombinationResult>();
makeChange(amount, currentCoin, results);
return results;
}
public static int makeChange(int amount, int currentCoin,
Collection<CombinationResult> results) {
// if amount = zero, we are at the bottom of a successful recursion
if (amount == 0) {
// return 1 to add this successful solution
return 1;
// check to see if we went too far
} else if (amount < 0) {
// don't count this try if we went too far
return 0;
// if we have exhausted our list of coin values
} else if (currentCoin < 0) {
return 0;
} else {
int firstWay = makeChange(
amount, currentCoin - 1, results);
int secondWay = makeChange(
amount - availableCoins[currentCoin],
currentCoin, results);
CombinationResult resultEntry = new CombinationResult(
firstWay, secondWay);
results.add(resultEntry);
return firstWay + secondWay;
}
}
}