Здесь я пытаюсь использовать мобильный телефон mobilenetv2 для обучения на настраиваемом наборе данных. Я могу заставить его работать на CPU, но я бы предпочел запускать его на GPU. Вместо этого я получаю такие ошибки:
RuntimeError: ожидаемый объект серверного процессора, но получил backend CUDA для аргумента # 2 «вес»
RuntimeError: ожидаемый объект внутреннего процессора, но получил backend CUDA для аргумента # 4 'mat1
Так, как в моем сообщении спрашивается, как я могу запустить предварительно обученную модель на графическом процессоре?
MobileNet = models.mobilenet_v2(pretrained = True)
if torch.cuda.is_available():
MobileNet.cuda()
for param in MobileNet.parameters():
param.requires_grad = False
torch.manual_seed(50)
MobileNet.classifier = nn.Sequential(nn.Linear(1280, 1000), nn.ReLU(), nn.Dropout(0.5), nn.Linear(1000,3), nn.LogSoftmax(dim=1))
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(MobileNet.classifier.parameters(), lr=0.001)
train_transform = transforms.Compose([
transforms.RandomRotation(10), # rotate +/- 10 degrees
transforms.RandomHorizontalFlip(), # reverse 50% of images
transforms.Resize(224), # resize shortest side to 224 pixels
transforms.CenterCrop(224), # crop longest side to 224 pixels at center
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
test_transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
train_data = datasets.ImageFolder('C:/Users/mixv/Pictures/Summer/datasets/train', transform=train_transform)
test_data = datasets.ImageFolder('C:/Users/mix/Pictures/Summer/datasets/test', transform=test_transform)
torch.manual_seed(42)
batch=64
train_loader = DataLoader(train_data, batch_size=batch, shuffle=True)
test_loader = DataLoader(test_data, batch_size=batch, shuffle=True)
if torch.cuda.is_available():
train_loader = DataLoader(train_data, batch_size=batch, shuffle=True, pin_memory = True)
test_loader = DataLoader(test_data, batch_size=batch, shuffle=True, pin_memory = True)
epochs = 10
train_losses = []
test_losses = []
train_correct = []
test_correct = []
start_time =time.time()
for i in range(epochs):
trn_corr = 0
tst_corr = 0
# Run the training batches
for b, (images, labels) in enumerate(train_loader):
if torch.cuda.is_available():
images = images.cuda()
labels = labels.cuda()
b+=1
# Apply the model
y_pred = MobileNet(images)
loss = criterion(y_pred, labels)
# Tally the number of correct predictions
predicted = torch.max(y_pred.data, 1)[1]
batch_corr = (predicted == labels).sum()
trn_corr += batch_corr
accuracy = trn_corr.item()*100/(b*batch)
# Update parameters
optimizer.zero_grad()
loss.backward()
optimizer.step()