Код Java Android будет работать на Nougat. Как запустить на другом android - PullRequest
0 голосов
/ 20 июня 2020

Я пробую априорный алгоритм и этот код, который я получил от Google, который загружался 4 года go. Затем, когда я попытаюсь запустить, я просто буду работать в версии Android Nougat. И ошибка в другой версии android. Что я должен делать? любой может мне помочь. Я здесь новенький. спасибо

    @RequiresApi(api = Build.VERSION_CODES.N)
    private void apriori() {
        aprioriReference.removeValue();
        AprioriFrequentItemsetGenerator<String> generator =
                new AprioriFrequentItemsetGenerator<>();

        List<Set<String>> itemsetList = new ArrayList<>();

        databaseReference.addValueEventListener(new ValueEventListener() {
            @Override
            public void onDataChange(@NonNull DataSnapshot dataSnapshot) {
                itemsetList.clear();
                for (DataSnapshot dataSnapshot1:dataSnapshot.getChildren()){
                    Set<String> set=new HashSet<>();
                    for(DataSnapshot dataSnapshot11:dataSnapshot1.child("trProduct").getChildren()){
                        set.add(dataSnapshot11.child("productId").getValue().toString());
                    }
                    itemsetList.add(set);
                }

                FrequentItemsetData<String> data = generator.generate(itemsetList, 0.2);
                int i = 0;

                for (Set<String> itemset : data.getFrequentItemsetList()) {

                    logs.append((i++)+":\t"+itemset+" with support "+data.getSupport(itemset)+"\n");
                    aprioriReference.child(String.valueOf(i)).child("itemSet").setValue(itemset.toString());
                    aprioriReference.child(String.valueOf(i)).child("support").setValue(data.getSupport(itemset));
                }
            }

            @Override
            public void onCancelled(@NonNull DatabaseError databaseError) {

            }
        });

FrequentItemsetData. java

package site.team2dev.adminag;
import java.util.List;
import java.util.Map;
import java.util.Set;
public class FrequentItemsetData<I> {
    private final List<Set<I>> frequentItemsetList;
    private final Map<Set<I>, Integer> supportCountMap;
    private final double minimumSupport;
    private final int numberOfTransactions;

    FrequentItemsetData(List<Set<I>> frequentItemsetList,
                        Map<Set<I>, Integer> supportCountMap,
                        double minimumSupport,
                        int transactionNumber) {
        this.frequentItemsetList = frequentItemsetList;
        this.supportCountMap = supportCountMap;
        this.minimumSupport = minimumSupport;
        this.numberOfTransactions = transactionNumber;
    }

    public List<Set<I>> getFrequentItemsetList() {
        return frequentItemsetList;
    }

    public Map<Set<I>, Integer> getSupportCountMap() {
        return supportCountMap;
    }

    public double getMinimumSupport() {
        return minimumSupport;
    }

    public int getTransactionNumber() {
        return numberOfTransactions;
    }

    public double getSupport(Set<I> itemset) {
        return 1.0 * supportCountMap.get(itemset) / numberOfTransactions;
    }
}

AprioriFrequentItemsetGenerator. java

package site.team2dev.adminag;


import android.os.Build;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Set;

import androidx.annotation.RequiresApi;


public class AprioriFrequentItemsetGenerator<I> {
    /**
     * Generates the frequent itemset data.
     *
     * @param transactionList the list of transactions to mine.
     * @param minimumSupport  the minimum support.
     * @return the object describing the result of this task.
     */
    @RequiresApi(api = Build.VERSION_CODES.N)
    public FrequentItemsetData<I> generate(List<Set<I>> transactionList,
                                           double minimumSupport) {
        Objects.requireNonNull(transactionList, "The itemset list is empty.");
        checkSupport(minimumSupport);

        if (transactionList.isEmpty()) {
            return null;
        }

        // Maps each itemset to its support count. Support count is simply the
        // number of times an itemset appeares in the transaction list.
        Map<Set<I>, Integer> supportCountMap = new HashMap<>();

        // Get the list of 1-itemsets that are frequent.
        List<Set<I>> frequentItemList = findFrequentItems(transactionList,
                supportCountMap,
                minimumSupport);

        // Maps each 'k' to the list of frequent k-itemsets.
        Map<Integer, List<Set<I>>> map = new HashMap<>();
        map.put(1, frequentItemList);

        // 'k' denotes the cardinality of itemsets processed at each iteration
        // of the following loop.
        int k = 1;

        do {
            ++k;

            // First generate the candidates.
            List<Set<I>> candidateList =
                    generateCandidates(map.get(k - 1));

            for (Set<I> transaction : transactionList) {
                List<Set<I>> candidateList2 = subset(candidateList,
                        transaction);

                for (Set<I> itemset : candidateList2) {
                    supportCountMap.put(itemset,
                            supportCountMap.getOrDefault(itemset,
                                    0) + 1);
                }
            }

            map.put(k, getNextItemsets(candidateList,
                    supportCountMap,
                    minimumSupport,
                    transactionList.size()));

        } while (!map.get(k).isEmpty());

        return new FrequentItemsetData<>(extractFrequentItemsets(map),
                supportCountMap,
                minimumSupport,
                transactionList.size());
    }

    /**
     * This method simply concatenates all the lists of frequent itemsets into
     * one list.
     *
     * @param  map the map mapping an itemset size to the list of frequent
     *             itemsets of that size.
     * @return the list of all frequent itemsets.
     */
    private List<Set<I>>
    extractFrequentItemsets(Map<Integer, List<Set<I>>> map) {
        List<Set<I>> ret = new ArrayList<>();

        for (List<Set<I>> itemsetList : map.values()) {
            ret.addAll(itemsetList);
        }

        return ret;
    }

    /**
     * This method gathers all the frequent candidate itemsets into a single
     * list.
     *
     * @param candidateList   the list of candidate itemsets.
     * @param supportCountMap the map mapping each itemset to its support count.
     * @param minimumSupport  the minimum support.
     * @param transactions    the total number of transactions.
     * @return a list of frequent itemset candidates.
     */
    private List<Set<I>> getNextItemsets(List<Set<I>> candidateList,
                                         Map<Set<I>, Integer> supportCountMap,
                                         double minimumSupport,
                                         int transactions) {
        List<Set<I>> ret = new ArrayList<>(candidateList.size());

        for (Set<I> itemset : candidateList) {
            if (supportCountMap.containsKey(itemset)) {
                int supportCount = supportCountMap.get(itemset);
                double support = 1.0 * supportCount / transactions;

                if (support >= minimumSupport) {
                    ret.add(itemset);
                }
            }
        }

        return ret;
    }

    /**
     * Computes the list of itemsets that are all subsets of
     * {@code transaction}.
     *
     * @param candidateList the list of candidate itemsets.
     * @param transaction   the transaction to test against.
     * @return the list of itemsets that are subsets of {@code transaction}
     *         itemset.
     */
    private List<Set<I>> subset(List<Set<I>> candidateList,
                                Set<I> transaction) {
        List<Set<I>> ret = new ArrayList<>(candidateList.size());

        for (Set<I> candidate : candidateList) {
            if (transaction.containsAll(candidate)) {
                ret.add(candidate);
            }
        }

        return ret;
    }

    /**
     * Generates the next candidates. This is so called F_(k - 1) x F_(k - 1)
     * method.
     *
     * @param itemsetList the list of source itemsets, each of size <b>k</b>.
     * @return the list of candidates each of size <b>k + 1</b>.
     */
    private List<Set<I>> generateCandidates(List<Set<I>> itemsetList) {
        List<List<I>> list = new ArrayList<>(itemsetList.size());

        for (Set<I> itemset : itemsetList) {
            List<I> l = new ArrayList<>(itemset);
            Collections.<I>sort(l, ITEM_COMPARATOR);
            list.add(l);
        }

        int listSize = list.size();

        List<Set<I>> ret = new ArrayList<>(listSize);

        for (int i = 0; i < listSize; ++i) {
            for (int j = i + 1; j < listSize; ++j) {
                Set<I> candidate = tryMergeItemsets(list.get(i), list.get(j));

                if (candidate != null) {
                    ret.add(candidate);
                }
            }
        }

        return ret;
    }

    /**
     * Attempts the actual construction of the next itemset candidate.
     * @param itemset1 the list of elements in the first itemset.
     * @param itemset2 the list of elements in the second itemset.
     *
     * @return a merged itemset candidate or {@code null} if one cannot be
     *         constructed from the input itemsets.
     */
    private Set<I> tryMergeItemsets(List<I> itemset1, List<I> itemset2) {
        int length = itemset1.size();

        for (int i = 0; i < length - 1; ++i) {
            if (!itemset1.get(i).equals(itemset2.get(i))) {
                return null;
            }
        }

        if (itemset1.get(length - 1).equals(itemset2.get(length - 1))) {
            return null;
        }

        Set<I> ret = new HashSet<>(length + 1);

        for (int i = 0; i < length - 1; ++i) {
            ret.add(itemset1.get(i));
        }

        ret.add(itemset1.get(length - 1));
        ret.add(itemset2.get(length - 1));
        return ret;
    }

    private static final Comparator ITEM_COMPARATOR = new Comparator() {

        @Override
        public int compare(Object o1, Object o2) {
            return ((Comparable) o1).compareTo(o2);
        }

    };

    /**
     * Computes the frequent itemsets of size 1.
     *
     * @param itemsetList     the entire database of transactions.
     * @param supportCountMap the support count map to which to write the
     *                        support counts of each item.
     * @param minimumSupport  the minimum support.
     * @return                the list of frequent one-itemsets.
     */

    private List<Set<I>> findFrequentItems(List<Set<I>> itemsetList,
                                           Map<Set<I>, Integer> supportCountMap,
                                           double minimumSupport) {
        Map<I, Integer> map = new HashMap<>();

        // Count the support counts of each item.
        for (Set<I> itemset : itemsetList) {
            for (I item : itemset) {
                Set<I> tmp = new HashSet<>(1);
                tmp.add(item);

                if (supportCountMap.containsKey(tmp)) {
                    supportCountMap.put(tmp, supportCountMap.get(tmp) + 1);
                } else {
                    supportCountMap.put(tmp, 1);
                }

                map.put(item, map.getOrDefault(item, 0) + 1);
            }
        }

        List<Set<I>> frequentItemsetList = new ArrayList<>();

        for (Map.Entry<I, Integer> entry : map.entrySet()) {
            if (1.0 * entry.getValue() / map.size() >= minimumSupport) {
                Set<I> itemset = new HashSet<>(1);
                itemset.add(entry.getKey());
                frequentItemsetList.add(itemset);
            }
        }

        return frequentItemsetList;
    }

    private void checkSupport(double support) {
        if (Double.isNaN(support)) {
            throw new IllegalArgumentException("The input support is NaN.");
        }

        if (support > 1.0) {
            throw new IllegalArgumentException(
                    "The input support is too large: " + support + ", " +
                            "should be at most 1.0");
        }

        if (support < 0.0) {
            throw new IllegalArgumentException(
                    "The input support is too small: " + support + ", " +
                            "should be at least 0.0");
        }
    }
}

1 Ответ

0 голосов
/ 20 июня 2020

getOrDefault используется для проверки null и возврата значения по умолчанию, если null.

введено из Nougat.

Таким образом, вы можете удалить его, установив нулевое значение вручную и назначив значение по умолчанию.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...