airflow версии 1.10.9 в docker возвращает EOFError и jinja2.exceptions.TemplateAssertionError: нет фильтра с именем 'min' - PullRequest
0 голосов
/ 29 мая 2020

У меня версия воздушного потока 1.10.9, работающая в docker. Он работает, но у него есть некоторые ошибки, которые я могу увидеть с помощью docker журналов:

Traceback (most recent call last):
  File "/usr/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
    self.run()
  File "/usr/local/lib/python3.6/dist-packages/airflow/executors/local_executor.py", line 112, in run
    key, command = self.task_queue.get()
  File "<string>", line 2, in get
  File "/usr/lib/python3.6/multiprocessing/managers.py", line 757, in _callmethod
    kind, result = conn.recv()
  File "/usr/lib/python3.6/multiprocessing/connection.py", line 250, in recv
    buf = self._recv_bytes()
  File "/usr/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
    buf = self._recv(4)
  File "/usr/lib/python3.6/multiprocessing/connection.py", line 383, in _recv
    raise EOFError
EOFError

А также этот (не полный след), который появляется, когда я нажимаю на зеленую отметку успеха в столбце Недавние задачи.

    self.fail('no filter named %r' % node.name, node.lineno)
  File "/usr/local/lib/python3.6/dist-packages/jinja2/compiler.py", line 309, in fail
    raise TemplateAssertionError(msg, lineno, self.name, self.filename)
jinja2.exceptions.TemplateAssertionError: no filter named 'min'

Я не понимаю, как это вызывает ошибку EOFError, но воздушный поток все еще работает. Я тоже не понимаю, что означает эта ошибка.

точка входа. sh #! / Usr / bin / env bash

TRY_LOOP="20"

: "${AIRFLOW_HOME:="/usr/local/airflow"}"
: "${AIRFLOW__CORE__FERNET_KEY:=${FERNET_KEY:=$(python -c "from cryptography.fernet import Fernet; FERNET_KEY = Fernet.generate_key().decode(); print(FERNET_KEY)")}}"
: "${AIRFLOW__CORE__EXECUTOR:="LocalExecutor"}"

# Load DAGs examples (default: Yes)
if [[ -z "$AIRFLOW__CORE__LOAD_EXAMPLES" && "${LOAD_EX:=n}" == n ]]; then
  AIRFLOW__CORE__LOAD_EXAMPLES=False
fi

export \
  AIRFLOW_HOME \
  AIRFLOW__CORE__EXECUTOR \
  AIRFLOW__CORE__FERNET_KEY \
  AIRFLOW__CORE__LOAD_EXAMPLES \

# Install custom python package if requirements.txt is present
if [ -e "/requirements.txt" ]; then
    $(command -v pip) install --user -r /requirements.txt
fi

wait_for_port() {
  local name="$1" host="$2" port="$3"
  local j=0
  while ! nc -z "$host" "$port" >/dev/null 2>&1 < /dev/null; do
    j=$((j+1))
    if [ $j -ge $TRY_LOOP ]; then
      echo >&2 "$(date) - $host:$port still not reachable, giving up"
      exit 1
    fi
    echo "$(date) - waiting for $name... $j/$TRY_LOOP"
    sleep 5
  done
}

# Other executors than SequentialExecutor drive the need for an SQL database, here PostgreSQL is used
if [ "$AIRFLOW__CORE__EXECUTOR" != "SequentialExecutor" ]; then
  # Check if the user has provided explicit Airflow configuration concerning the database
  if [ -z "$AIRFLOW__CORE__SQL_ALCHEMY_CONN" ]; then
    # Default values corresponding to the default compose files
    : "${POSTGRES_HOST:="XXX"}"
    : "${POSTGRES_PORT:="XXX"}"
    : "${POSTGRES_USER:="XXX"}"
    : "${POSTGRES_PASSWORD:="XXX"}"
    : "${POSTGRES_DB:="XXX"}"
    : "${POSTGRES_EXTRAS:-""}"
    AIRFLOW__CORE__SQL_ALCHEMY_CONN="postgresql+psycopg2://${POSTGRES_USER}:${POSTGRES_PASSWORD}@${POSTGRES_HOST}:${POSTGRES_PORT}/${POSTGRES_DB}${POSTGRES_EXTRAS}"
    export AIRFLOW__CORE__SQL_ALCHEMY_CONN

    # Check if the user has provided explicit Airflow configuration for the broker's connection to the database
    if [ "$AIRFLOW__CORE__EXECUTOR" = "CeleryExecutor" ]; then
      AIRFLOW__CELERY__RESULT_BACKEND="db+postgresql://${POSTGRES_USER}:${POSTGRES_PASSWORD}@${POSTGRES_HOST}:${POSTGRES_PORT}/${POSTGRES_DB}${POSTGRES_EXTRAS}"
      export AIRFLOW__CELERY__RESULT_BACKEND
    fi
  else
    if [[ "$AIRFLOW__CORE__EXECUTOR" == "CeleryExecutor" && -z "$AIRFLOW__CELERY__RESULT_BACKEND" ]]; then
      >&2 printf '%s\n' "FATAL: if you set AIRFLOW__CORE__SQL_ALCHEMY_CONN manually with CeleryExecutor you must also set AIRFLOW__CELERY__RESULT_BACKEND"
      exit 1
    fi

    # Derive useful variables from the AIRFLOW__ variables provided explicitly by the user
    POSTGRES_ENDPOINT=$(echo -n "$AIRFLOW__CORE__SQL_ALCHEMY_CONN" | cut -d '/' -f3 | sed -e 's,.*@,,')
    POSTGRES_HOST=$(echo -n "$POSTGRES_ENDPOINT" | cut -d ':' -f1)
    POSTGRES_PORT=$(echo -n "$POSTGRES_ENDPOINT" | cut -d ':' -f2)
  fi

  wait_for_port "Postgres" "$POSTGRES_HOST" "$POSTGRES_PORT"
fi

# CeleryExecutor drives the need for a Celery broker, here Redis is used
if [ "$AIRFLOW__CORE__EXECUTOR" = "CeleryExecutor" ]; then
  # Check if the user has provided explicit Airflow configuration concerning the broker
  if [ -z "$AIRFLOW__CELERY__BROKER_URL" ]; then
    # Default values corresponding to the default compose files
    : "${REDIS_PROTO:="redis://"}"
    : "${REDIS_HOST:="redis"}"
    : "${REDIS_PORT:="6379"}"
    : "${REDIS_PASSWORD:=""}"
    : "${REDIS_DBNUM:="1"}"

    # When Redis is secured by basic auth, it does not handle the username part of basic auth, only a token
    if [ -n "$REDIS_PASSWORD" ]; then
      REDIS_PREFIX=":${REDIS_PASSWORD}@"
    else
      REDIS_PREFIX=
    fi

    AIRFLOW__CELERY__BROKER_URL="${REDIS_PROTO}${REDIS_PREFIX}${REDIS_HOST}:${REDIS_PORT}/${REDIS_DBNUM}"
    export AIRFLOW__CELERY__BROKER_URL
  else
    # Derive useful variables from the AIRFLOW__ variables provided explicitly by the user
    REDIS_ENDPOINT=$(echo -n "$AIRFLOW__CELERY__BROKER_URL" | cut -d '/' -f3 | sed -e 's,.*@,,')
    REDIS_HOST=$(echo -n "$POSTGRES_ENDPOINT" | cut -d ':' -f1)
    REDIS_PORT=$(echo -n "$POSTGRES_ENDPOINT" | cut -d ':' -f2)
  fi

  wait_for_port "Redis" "$REDIS_HOST" "$REDIS_PORT"
fi

case "$1" in
  webserver)
    airflow initdb
    if [ "$AIRFLOW__CORE__EXECUTOR" = "LocalExecutor" ] || [ "$AIRFLOW__CORE__EXECUTOR" = "SequentialExecutor" ]; then
      # With the "Local" and "Sequential" executors it should all run in one container.
      airflow scheduler &
    fi
    exec airflow webserver
    ;;
  worker|scheduler)
    # Give the webserver time to run initdb.
    sleep 10
    exec airflow "$@"
    ;;
  flower)
    sleep 10
    exec airflow "$@"
    ;;
  version)
    exec airflow "$@"
    ;;
  *)
    # The command is something like bash, not an airflow subcommand. Just run it in the right environment.
    exec "$@"
    ;;
esac

Airflow.cfg

[core]
# The home folder for airflow, default is ~/airflow

# The folder where your airflow pipelines live, most likely a
# subfolder in a code repository
# This path must be absolute
dags_folder = /usr/local/airflow/dags

# The folder where airflow should store its log files
# This path must be absolute
base_log_folder = /usr/local/airflow/logs

# Airflow can store logs remotely in AWS S3, Google Cloud Storage or Elastic Search.
# Users must supply an Airflow connection id that provides access to the storage
# location. If remote_logging is set to true, see UPDATING.md for additional
# configuration requirements.
remote_logging = False
remote_log_conn_id =
remote_base_log_folder =
encrypt_s3_logs = False

# Logging level
logging_level = INFO
fab_logging_level = WARN

# Logging class
# Specify the class that will specify the logging configuration
# This class has to be on the python classpath
# logging_config_class = my.path.default_local_settings.LOGGING_CONFIG
logging_config_class =

# Log format
# we need to escape the curly braces by adding an additional curly brace
log_format = [%%(asctime)s] {%%(filename)s:%%(lineno)d} %%(levelname)s - %%(message)s
simple_log_format = %%(asctime)s %%(levelname)s - %%(message)s

# Log filename format
# we need to escape the curly braces by adding an additional curly brace
log_filename_template = {{ ti.dag_id }}/{{ ti.task_id }}/{{ ts }}/{{ try_number }}.log
log_processor_filename_template = {{ filename }}.log

# Hostname by providing a path to a callable, which will resolve the hostname
hostname_callable = socket:getfqdn

# Default timezone in case supplied date times are naive
# can be utc (default), system, or any IANA timezone string (e.g. Europe/Amsterdam)
default_timezone = utc

# The executor class that airflow should use. Choices include
# SequentialExecutor, LocalExecutor, CeleryExecutor, DaskExecutor
executor = LocalExecutor

# The SqlAlchemy connection string to the metadata database.
# SqlAlchemy supports many different database engine, more information
# their website
sql_alchemy_conn = $AIRFLOW_CONN_PROD_RDS

# If SqlAlchemy should pool database connections.
sql_alchemy_pool_enabled = True

# The SqlAlchemy pool size is the maximum number of database connections
# in the pool. 0 indicates no limit.
sql_alchemy_pool_size = 5

# The SqlAlchemy pool recycle is the number of seconds a connection
# can be idle in the pool before it is invalidated. This config does
# not apply to sqlite. If the number of DB connections is ever exceeded,
# a lower config value will allow the system to recover faster.
sql_alchemy_pool_recycle = 1800

# How many seconds to retry re-establishing a DB connection after
# disconnects. Setting this to 0 disables retries.
sql_alchemy_reconnect_timeout = 300

# The amount of parallelism as a setting to the executor. This defines
# the max number of task instances that should run simultaneously
# on this airflow installation
parallelism = 32

# The number of task instances allowed to run concurrently by the scheduler
dag_concurrency = 16

# Are DAGs paused by default at creation
dags_are_paused_at_creation = True

# When not using pools, tasks are run in the "default pool",
# whose size is guided by this config element
non_pooled_task_slot_count = 128

# The maximum number of active DAG runs per DAG
max_active_runs_per_dag = 16

# Whether to load the examples that ship with Airflow. It's good to
# get started, but you probably want to set this to False in a production
# environment
load_examples = False

# Where your Airflow plugins are stored
plugins_folder = /usr/local/airflow/plugins

# Secret key to save connection passwords in the db
fernet_key =

# Whether to disable pickling dags
donot_pickle = False

# How long before timing out a python file import while filling the DagBag
dagbag_import_timeout = 30

# The class to use for running task instances in a subprocess
task_runner = BashTaskRunner

# If set, tasks without a `run_as_user` argument will be run with this user
# Can be used to de-elevate a sudo user running Airflow when executing tasks
default_impersonation =

# What security module to use (for example kerberos):
security =

# If set to False enables some unsecure features like Charts and Ad Hoc Queries.
# In 2.0 will default to True.
secure_mode = False

# Turn unit test mode on (overwrites many configuration options with test
# values at runtime)
unit_test_mode = False

# Name of handler to read task instance logs.
# Default to use task handler.
task_log_reader = task

# Whether to enable pickling for xcom (note that this is insecure and allows for
# RCE exploits). This will be deprecated in Airflow 2.0 (be forced to False).
enable_xcom_pickling = True

# When a task is killed forcefully, this is the amount of time in seconds that
# it has to cleanup after it is sent a SIGTERM, before it is SIGKILLED
killed_task_cleanup_time = 60

# Whether to override params with dag_run.conf. If you pass some key-value pairs through `airflow backfill -c` or
# `airflow trigger_dag -c`, the key-value pairs will override the existing ones in params.
dag_run_conf_overrides_params = False

[cli]
# In what way should the cli access the API. The LocalClient will use the
# database directly, while the json_client will use the api running on the
# webserver
api_client = airflow.api.client.local_client

# If you set web_server_url_prefix, do NOT forget to append it here, ex:
# endpoint_url = http://localhost:8080/myroot
# So api will look like: http://localhost:8080/myroot/api/experimental/...
endpoint_url = http://localhost:8080

[api]
# How to authenticate users of the API
auth_backend = airflow.api.auth.backend.default

[lineage]
# what lineage backend to use
backend =

[atlas]
sasl_enabled = False
host =
port = 21000
username =
password =

[operators]
# The default owner assigned to each new operator, unless
# provided explicitly or passed via `default_args`
default_owner = Airflow
default_cpus = 2
default_ram = 2048
default_disk = 2048
default_gpus = 0

[hive]
# Default mapreduce queue for HiveOperator tasks
default_hive_mapred_queue =

[webserver]
# The base url of your website as airflow cannot guess what domain or
# cname you are using. This is used in automated emails that
# airflow sends to point links to the right web server
base_url = http://localhost:8080

# The ip specified when starting the web server
web_server_host = 0.0.0.0

# The port on which to run the web server
web_server_port = 8080

# Paths to the SSL certificate and key for the web server. When both are
# provided SSL will be enabled. This does not change the web server port.
web_server_ssl_cert =
web_server_ssl_key =

# Number of seconds the webserver waits before killing gunicorn master that doesn't respond
web_server_master_timeout = 120

# Number of seconds the gunicorn webserver waits before timing out on a worker
web_server_worker_timeout = 120

# Number of workers to refresh at a time. When set to 0, worker refresh is
# disabled. When nonzero, airflow periodically refreshes webserver workers by
# bringing up new ones and killing old ones.
worker_refresh_batch_size = 1

# Number of seconds to wait before refreshing a batch of workers.
worker_refresh_interval = 30

# Secret key used to run your flask app
secret_key = temporary_key

# Number of workers to run the Gunicorn web server
workers = 4

# The worker class gunicorn should use. Choices include
# sync (default), eventlet, gevent
worker_class = sync

# Log files for the gunicorn webserver. '-' means log to stderr.
access_logfile = -
error_logfile = -

# Expose the configuration file in the web server
expose_config = False

# Set to true to turn on authentication:
# https://airflow.incubator.apache.org/security.html#web-authentication
authenticate = False

# Filter the list of dags by owner name (requires authentication to be enabled)
filter_by_owner = False

# Filtering mode. Choices include user (default) and ldapgroup.
# Ldap group filtering requires using the ldap backend
#
# Note that the ldap server needs the "memberOf" overlay to be set up
# in order to user the ldapgroup mode.
owner_mode = user

dag_default_view = tree

dag_orientation = LR

demo_mode = False

log_fetch_timeout_sec = 30

hide_paused_dags_by_default = False

page_size = 100

# Use FAB-based webserver with RBAC feature
rbac = False

# Define the color of navigation bar
navbar_color = #007A87

# Default dagrun to show in UI
default_dag_run_display_number = 25


[email]
email_backend = airflow.utils.email.send_email_smtp


[smtp]
smtp_host = localhost
smtp_starttls = True
smtp_ssl = False
smtp_port = 25
smtp_mail_from = airflow@example.com


[celery]
celery_app_name = airflow.executors.celery_executor

worker_concurrency = 16

worker_log_server_port = 8793

# The Celery broker URL. Celery supports RabbitMQ, Redis and experimentally
# a sqlalchemy database. Refer to the Celery documentation for more
# information.
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#broker-settings
broker_url =

# The Celery result_backend. When a job finishes, it needs to update the
# metadata of the job. Therefore it will post a message on a message bus,
# or insert it into a database (depending of the backend)
# This status is used by the scheduler to update the state of the task
# The use of a database is highly recommended
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#task-result-backend-settings
result_backend = sqlite:///~/airflow_tutorial/airflow.db

# Celery Flower is a sweet UI for Celery. Airflow has a shortcut to start
# it `airflow flower`. This defines the IP that Celery Flower runs on
flower_host = 0.0.0.0

# The root URL for Flower
# Ex: flower_url_prefix = /flower
flower_url_prefix =

# This defines the port that Celery Flower runs on
flower_port = 5555

# Default queue that tasks get assigned to and that worker listen on.
default_queue = default

# Import path for celery configuration options
celery_config_options = airflow.config_templates.default_celery.DEFAULT_CELERY_CONFIG

# In case of using SSL
ssl_active = False
ssl_key =
ssl_cert =
ssl_cacert =

[celery_broker_transport_options]
# This section is for specifying options which can be passed to the
# underlying celery broker transport.  See:
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-broker_transport_options

# The visibility timeout defines the number of seconds to wait for the worker
# to acknowledge the task before the message is redelivered to another worker.
# Make sure to increase the visibility timeout to match the time of the longest
# ETA you're planning to use.
#
# visibility_timeout is only supported for Redis and SQS celery brokers.
# See:
#   http://docs.celeryproject.org/en/master/userguide/configuration.html#std:setting-broker_transport_options
#
#visibility_timeout = 21600

[dask]
# This section only applies if you are using the DaskExecutor in
# [core] section above

# The IP address and port of the Dask cluster's scheduler.
cluster_address = 127.0.0.1:8786
# TLS/ SSL settings to access a secured Dask scheduler.
tls_ca =
tls_cert =
tls_key =


[scheduler]
# Task instances listen for external kill signal (when you clear tasks
# from the CLI or the UI), this defines the frequency at which they should
# listen (in seconds).
job_heartbeat_sec = 5

# The scheduler constantly tries to trigger new tasks (look at the
# scheduler section in the docs for more information). This defines
# how often the scheduler should run (in seconds).
scheduler_heartbeat_sec = 5

# after how much time should the scheduler terminate in seconds
# -1 indicates to run continuously (see also num_runs)
run_duration = -1

# after how much time a new DAGs should be picked up from the filesystem
min_file_process_interval = 0

# How many seconds to wait between file-parsing loops to prevent the logs from being spammed.
min_file_parsing_loop_time = 1

dag_dir_list_interval = 300

# How often should stats be printed to the logs
print_stats_interval = 30

child_process_log_directory = ~/airflow_tutorial/logs/scheduler

# Local task jobs periodically heartbeat to the DB. If the job has
# not heartbeat in this many seconds, the scheduler will mark the
# associated task instance as failed and will re-schedule the task.
scheduler_zombie_task_threshold = 300

# Turn off scheduler catchup by setting this to False.
# Default behavior is unchanged and
# Command Line Backfills still work, but the scheduler
# will not do scheduler catchup if this is False,
# however it can be set on a per DAG basis in the
# DAG definition (catchup)
catchup_by_default = True

# This changes the batch size of queries in the scheduling main loop.
# If this is too high, SQL query performance may be impacted by one
# or more of the following:
#  - reversion to full table scan
#  - complexity of query predicate
#  - excessive locking
#
# Additionally, you may hit the maximum allowable query length for your db.
#
# Set this to 0 for no limit (not advised)
max_tis_per_query = 512

# Statsd (https://github.com/etsy/statsd) integration settings
statsd_on = False
statsd_host = localhost
statsd_port = 8125
statsd_prefix = airflow

# The scheduler can run multiple threads in parallel to schedule dags.
# This defines how many threads will run.
max_threads = 2

authenticate = False

[ldap]
# set this to ldaps://<your.ldap.server>:<port>
uri =
user_filter = objectClass=*
user_name_attr = uid
group_member_attr = memberOf
superuser_filter =
data_profiler_filter =
bind_user = cn=Manager,dc=example,dc=com
bind_password = insecure
basedn = dc=example,dc=com
cacert = /etc/ca/ldap_ca.crt
search_scope = LEVEL

[mesos]
# Mesos master address which MesosExecutor will connect to.
master = localhost:5050

# The framework name which Airflow scheduler will register itself as on mesos
framework_name = Airflow

# Number of cpu cores required for running one task instance using
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
# command on a mesos slave
task_cpu = 1

# Memory in MB required for running one task instance using
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
# command on a mesos slave
task_memory = 256

# Enable framework checkpointing for mesos
# See http://mesos.apache.org/documentation/latest/slave-recovery/
checkpoint = False

# Failover timeout in milliseconds.
# When checkpointing is enabled and this option is set, Mesos waits
# until the configured timeout for
# the MesosExecutor framework to re-register after a failover. Mesos
# shuts down running tasks if the
# MesosExecutor framework fails to re-register within this timeframe.
# failover_timeout = 604800

# Enable framework authentication for mesos
# See http://mesos.apache.org/documentation/latest/configuration/
authenticate = False

# Mesos credentials, if authentication is enabled
# default_principal = admin
# default_secret = admin

# Optional Docker Image to run on slave before running the command
# This image should be accessible from mesos slave i.e mesos slave
# should be able to pull this docker image before executing the command.
# docker_image_slave = puckel/docker-airflow

[kerberos]
ccache = /tmp/airflow_krb5_ccache
# gets augmented with fqdn
principal = airflow
reinit_frequency = 3600
kinit_path = kinit
keytab = airflow.keytab


[github_enterprise]
api_rev = v3

[admin]
# UI to hide sensitive variable fields when set to True
hide_sensitive_variable_fields = True

[elasticsearch]
elasticsearch_host =
# we need to escape the curly braces by adding an additional curly brace
elasticsearch_log_id_template = {dag_id}-{task_id}-{execution_date}-{try_number}
elasticsearch_end_of_log_mark = end_of_log

[kubernetes]
# The repository and tag of the Kubernetes Image for the Worker to Run
worker_container_repository =
worker_container_tag =

# If True (default), worker pods will be deleted upon termination
delete_worker_pods = True

# The Kubernetes namespace where airflow workers should be created. Defaults to `default`
namespace = default

# The name of the Kubernetes ConfigMap Containing the Airflow Configuration (this file)
airflow_configmap =

# For either git sync or volume mounted DAGs, the worker will look in this subpath for DAGs
dags_volume_subpath =

# For DAGs mounted via a volume claim (mutually exclusive with volume claim)
dags_volume_claim =

# For volume mounted logs, the worker will look in this subpath for logs
logs_volume_subpath =

# A shared volume claim for the logs
logs_volume_claim =

# Git credentials and repository for DAGs mounted via Git (mutually exclusive with volume claim)
git_repo =
git_branch =
git_user =
git_password =
git_subpath =

# For cloning DAGs from git repositories into volumes: https://github.com/kubernetes/git-sync
git_sync_container_repository = gcr.io/google-containers/git-sync-amd64
git_sync_container_tag = v2.0.5
git_sync_init_container_name = git-sync-clone

# The name of the Kubernetes service account to be associated with airflow workers, if any.
# Service accounts are required for workers that require access to secrets or cluster resources.
# See the Kubernetes RBAC documentation for more:
#   https://kubernetes.io/docs/admin/authorization/rbac/
worker_service_account_name =

# Any image pull secrets to be given to worker pods, If more than one secret is
# required, provide a comma separated list: secret_a,secret_b
image_pull_secrets =

# GCP Service Account Keys to be provided to tasks run on Kubernetes Executors
# Should be supplied in the format: key-name-1:key-path-1,key-name-2:key-path-2
gcp_service_account_keys =

# Use the service account kubernetes gives to pods to connect to kubernetes cluster.
# It's intended for clients that expect to be running inside a pod running on kubernetes.
# It will raise an exception if called from a process not running in a kubernetes environment.
in_cluster = True

[kubernetes_secrets]
# The scheduler mounts the following secrets into your workers as they are launched by the
# scheduler. You may define as many secrets as needed and the kubernetes launcher will parse the
# defined secrets and mount them as secret environment variables in the launched workers.
# Secrets in this section are defined as follows
#     <environment_variable_mount> = <kubernetes_secret_object>:<kubernetes_secret_key>
#
# For example if you wanted to mount a kubernetes secret key named `postgres_password` from the
# kubernetes secret object `airflow-secret` as the environment variable `POSTGRES_PASSWORD` into
# your workers you would follow the following format:
#     POSTGRES_PASSWORD = airflow-secret:postgres_credentials
#
# Additionally you may override worker airflow settings with the AIRFLOW__<SECTION>__<KEY>
# formatting as supported by airflow normally.

Вся эта настройка выполняется под c5.large EC2 в AWS

...