У меня есть словарь фреймов данных (248 стран), которые я хочу объединить в один фрейм данных.
фрейм данных называется dfs, поэтому, если я хочу получить доступ к содержимому для Албании, я использую:
dfs["Albania"]
Я использовал приведенный ниже код, чтобы сделать это с 4 фреймами данных ранее, когда учился объединять фреймы данных.
Могу ли я адаптировать это для работы как al oop с 248 странами, которые я хочу включить сейчас, а также установить ключ для каждого конкатенированного df в качестве названия страны?
У меня есть очень мало продвинулся в этом за последние несколько часов!
datasets = [df_ireland, df_italy, df_france, df_germany]
frames = []
for frame in datasets:
frames.append(frame)
df_join = pd.concat(frames, keys=['Ireland', 'Italy', 'France', 'Germany'])
Вот l oop, который я использовал для создания словаря на случай, если это принесет какую-либо пользу:
# Import the libraries
import requests
import requests_cache
import json
import pandas as pd
import numpy as np
from pandas import Series, DataFrame, json_normalize
from datetime import datetime
# Make an API call and store the response.
sum_url = 'https://api.covid19api.com/summary'
sum_data = requests.get(sum_url)
# Store the API response in a variable.
available_sum_data = sum_data.json()
sum_df = json_normalize(available_sum_data["Countries"])
# Make a list of countries
countries = sum_df['Country'].tolist()
# Make a empty dictionary to hold dataframes
dfs = {}
for country in countries:
print(country)
try:
# check the cache and if old data call api
requests_cache.install_cache(f'{country} cache', expire_after=21600)
url = f'https://api.covid19api.com/total/dayone/country/{country}'
data = requests.get(url)
# test if cache used
print(data.from_cache)
except requests.exceptions.RequestException as e: # This is the correct syntax
print(e)
print('cant print' + country)
try:
available_data = data.json()
dfs[f'{country}'] = pd.json_normalize(available_data)
# Create Daily new cases column & SMA
dfs[f'{country}']["New Cases"] = dfs[f'{country}']['Confirmed'].diff()
dfs[f'{country}']["SMA_10 New Cases"] = dfs[f'{country}']["New Cases"].rolling(window=10).mean()
# Create Daily new deaths column & SMA
dfs[f'{country}']["New Deaths"] = dfs[f'{country}']['Deaths'].diff()
dfs[f'{country}']["SMA_10 New Deaths"] = dfs[f'{country}']["New Deaths"].rolling(window=10).mean()
except:
print('cant format to json: ' + country)