При обучении модели распознаванию и классификации изображений с помощью:
epochs=2
history = model.fit_generator(train_data_gen,
steps_per_epoch=int(np.ceil(total_train / float(BATCH_SIZE))),
epochs=epochs,
validation_data=val_data_gen,
validation_steps=int(np.ceil(total_validation / float(BATCH_SIZE)))
)
ValueError: Несоответствие формы: форма меток (полученная (200,)) должна соответствовать форме логитов, за исключением последнее измерение (получено (100, 2)).
.. эта ошибка появляется. Я прочитал несколько ответов на один и тот же вопрос о несоответствии формы, но не могу найти правильного решения.
Весь код выглядит следующим образом:
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import os
import matplotlib.pyplot as plt
_URL = r'https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip'
zip_dir = tf.keras.utils.get_file('cats_and_dogs_filtered.zip', origin = _URL, extract =
True)
base_dir = os.path.join(os.path.dirname(zip_dir), 'cats_and_dogs_filtered')
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
train_cats_dir = os.path.join(train_dir, 'cats')
train_dogs_dir = os.path.join(train_dir, 'dogs')
validation_cats_dir = os.path.join(validation_dir, 'cats')
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
num_cats_tr = len(os.listdir(train_cats_dir))
num_dogs_tr = len(os.listdir(train_dogs_dir))
num_cats_val = len(os.listdir(validation_cats_dir))
num_dogs_val = len(os.listdir(validation_dogs_dir))
total_train = num_cats_tr + num_dogs_tr
total_validation = num_cats_val + num_dogs_val
print('training cat images:', num_cats_tr)
print('training dog images:', num_dogs_tr)
print('validation cat images:', num_cats_val)
print('validation dog images:', num_dogs_val)
print('total training images:', total_train)
print('total validation images:', total_validation)
BATCH_SIZE = 100
IMG_SHAPE = 150
def plotImages(images_arr):
fig, axes = plt.subplots(1,5, figsize=(20,20))
axes = axes.flatten()
for img, ax in zip(images_arr, axes):
ax.imshow(img)
plt.tight_layout()
plt.show()
image_gen = ImageDataGenerator(rescale = 1./255, horizontal_flip = True)
train_data_gen = image_gen.flow_from_directory(batch_size=BATCH_SIZE, directory=train_dir,
shuffle=True, target_size=(IMG_SHAPE,IMG_SHAPE))
augmented_images = [train_data_gen[0][0][0] for i in range(5)]
plotImages(augmented_images)
image_gen = ImageDataGenerator(rescale=1./255, rotation_range=45)
train_data_gen = image_gen.flow_from_directory(batch_size=BATCH_SIZE, directory=train_dir,
shuffle=True, target_size=(IMG_SHAPE,IMG_SHAPE))
augmented_images = [train_data_gen[0][0][0] for i in range(5)]
plotImages(augmented_images)
image_gen = ImageDataGenerator(rescale=1./255, zoom_range=0.5)
train_data_gen = image_gen.flow_from_directory(batch_size=BATCH_SIZE, directory=train_dir,
shuffle=True, target_size=(IMG_SHAPE,IMG_SHAPE))
image_gen_train = ImageDataGenerator(rescale=1./255, rotation_range=40,
width_shift_range=0.2, height_shift_range=0.2,
shear_range=0.2, zoom_range=0.2, horizontal_flip=True,
fill_mode='nearest')
train_data_gen = image_gen_train.flow_from_directory(batch_size=BATCH_SIZE,
directory=train_dir, shuffle=True,
target_size=(IMG_SHAPE,IMG_SHAPE))
augmented_images = [train_data_gen[0][0][0] for i in range(5)]
plotImages(augmented_images)
image_gen_val = ImageDataGenerator(rescale=1./255)
val_data_gen = image_gen_val.flow_from_directory(batch_size=BATCH_SIZE,
directory=validation_dir,
target_size=(IMG_SHAPE,IMG_SHAPE),
class_mode='binary')
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(150,150,3)),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(2)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.summary()
epochs=2
history = model.fit_generator(
train_data_gen,
steps_per_epoch=int(np.ceil(total_train / float(BATCH_SIZE))),
epochs=epochs,
validation_data=val_data_gen,
validation_steps=int(np.ceil(total_validation / float(BATCH_SIZE)))
)