Я просматривал этот учебник по seq2seq и сохранял модели каждые 1000 итераций.
https://github.com/spro/practical-pytorch/blob/master/seq2seq-translation/seq2seq-translation.ipynb
Я пытаюсь вычислять метрики и анализировать результаты, поэтому Я хочу рассчитать оценку точности, отзыва и F1 для нового набора тестов. Я создаю этот сценарий:
import torch
import pandas as pd
from sklearn.metrics import precision_recall_fscore_support
import seq2seq_tutorial
max_length=50
test_vectors = pd.read_pickle("Pickels/first-second.pkl")
y_true = list(test_vectors[1])
test_vectors = [list(map(str, list(test_vectors.iloc[i])[0])) for i in range(len(test_vectors))]
test_vectors = [("".join(sent)).strip() for sent in test_vectors]
results = []
for k in range(1000, 75001, 1000):
print("K: " + str(k))
encoder = torch.load("Models/seq2seq/encoder_" + str(k) + "_steps.pth")
decoder = torch.load("Models/seq2seq/decoder_" + str(k) + "_steps.pth")
predictions_for_model_k = []
for i in range(len(test_vectors)):
try:
prediction = explained_code.evaluate(encoder, decoder, test_vectors[i],max_length)
prediction = prediction[0][0]
predictions_for_model_k.append(prediction)
except:
print("Exception at %s" % i)
accuracy = precision_recall_fscore_support(y_true, predictions_for_model_k, average='weighted')
precision = accuracy[0]
recall = accuracy[1]
f_score = accuracy[2]
print("Precision: " + str(round(precision * 100, 3)))
print("Recall: " + str(round(recall * 100, 3)))
print("F_score: " + str(round(f_score * 100, 3)))
results.append([str(k) + "steps", predictions_for_model_k, y_true, precision, recall, f_score])
pd.to_pickle(results, "Pickles/Results/results.pkl")
Но я получил эту ошибку:
AttributeError: Can't get attribute 'EncoderRNN' on <module '__main__'
Вы можете помочь с этой проблемой? Спасибо!