Я следую Udacity Intro to Pytorch в Exercise 7 , которое предназначено для создания модели, которая может распознавать собак или кошек.
Вот мой код.
import matplotlib.pyplot as plt
import torch
from torchvision import datasets, transforms
# %%
base_path = './assets/'
data_dir = 'Cat_Dog_data'
train_folder = base_path + data_dir
# TODO: Define transforms for the training data and testing data
train_transforms = transforms.Compose([
transforms.RandomRotation(30),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
test_transforms = transforms.Compose([
transforms.Resize(255),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
# Pass transforms in here, then run the next cell to see how the transforms look
train_data = datasets.ImageFolder(train_folder + '/train', transform=train_transforms)
test_data = datasets.ImageFolder(train_folder + '/test', transform=test_transforms)
trainloader = torch.utils.data.DataLoader(train_data, batch_size=32)
testloader = torch.utils.data.DataLoader(test_data, batch_size=32)
# %%
# Optional TODO: Attempt to build a network to classify cats vs dogs from this dataset
from torch import nn, optim
import torch.nn.functional as F
class Classifier(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(150528, 512) # use a closer number to 150525 as output features
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 128)
self.fc4 = nn.Linear(128, 64)
self.fc5 = nn.Linear(64, 32)
self.fc6 = nn.Linear(32, 2)
self.dropOut = nn.Dropout(p=0.2)
def forward(self, x):
# x.shape = [64, 3, 224, 224]
x = x.view(x.shape[0], -1) # reshape to [63, 3 * 224 * 224]
output = self.dropOut(F.relu(self.fc1(x)))
output = self.dropOut(F.relu(self.fc2(output)))
output = self.dropOut(F.relu(self.fc3(output)))
output = self.dropOut(F.relu(self.fc4(output)))
output = self.dropOut(F.relu(self.fc5(output)))
output = F.log_softmax(self.fc6(output), dim=1)
return output
# %%
epochs = 5
model = Classifier()
# model.cuda()
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.parameters(), lr = 0.0001)
train_losses, test_losses = [], []
printed = False
for e in range(epochs):
running_loss = 0
for images, labels in trainloader:
optimizer.zero_grad()
log_ps = model(images)
# print(f'labels shape: {labels.shape}')# [32]
# print(f'log_ps shape: {log_ps.shape}')# [32,1]
# log_ps = log_ps.view(-1)
loss = criterion(log_ps, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
else:
test_loss = 0
accuracy = 0
with torch.no_grad():
model.eval()
for images, labels in testloader:
log_ps = model(images)
if printed == False:
print(f'images.shape:{images.shape}')
printed = True
test_loss += criterion(log_ps, labels)
ps = torch.exp(log_ps)
top_p, top_class = ps.topk(1, dim=1)
equals = top_class == labels.view(*top_class.shape)
accuracy += torch.mean(equals.type(torch.FloatTensor))
model.train()
train_losses.append(running_loss/len(trainloader))
test_losses.append(test_loss/len(testloader))
print("Epoch: {}/{}.. ".format(e+1, epochs),
"Training Loss: {:.3f}.. ".format(train_losses[-1]),
"Test Loss: {:.3f}.. ".format(test_losses[-1]),
"Test Accuracy: {:.3f}".format(accuracy/len(testloader)))
Вот результат:
images.shape:torch.Size([32, 3, 224, 224])
Epoch: 1/5.. Training Loss: 0.152.. Test Loss: 15.427.. Test Accuracy: 0.506
Epoch: 2/5.. Training Loss: 0.435.. Test Loss: 13.295.. Test Accuracy: 0.506
Epoch: 3/5.. Training Loss: 0.484.. Test Loss: 14.875.. Test Accuracy: 0.506
Epoch: 4/5.. Training Loss: 0.542.. Test Loss: 15.111.. Test Accuracy: 0.506
Epoch: 5/5.. Training Loss: 0.617.. Test Loss: 10.860.. Test Accuracy: 0.506
Меня смущает, почему точность теста не улучшается, а потери в обучении растут.