Я новичок в pytorch. Вот архитектура модели тензорного потока, и я хотел бы преобразовать ее в модель pytorch.
Я выполнил большинство кодов, но в некоторых местах меня смущает.
1) В тензорном потоке функция Conv2D принимает фильтр в качестве входных данных. Однако в pytorch функция принимает размер входных и выходных каналов в качестве входных данных. Итак, как мне найти эквивалентное количество входных и выходных каналов с учетом размера фильтра.
2) В тензорном потоке плотный слой имеет параметр, называемый «узлами». Однако в pytorch один и тот же слой имеет 2 разных входа (размер входных параметров и размер целевых параметров), как мне определить их на основе количества узлов.
Вот код тензорного потока .
from keras.utils import to_categorical
from keras.models import Sequential, load_model
from keras.layers import Conv2D, MaxPool2D, Dense, Flatten, Dropout
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(5,5), activation='relu', input_shape=X_train.shape[1:]))
model.add(Conv2D(filters=32, kernel_size=(5,5), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(rate=0.25))
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(rate=0.25))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(rate=0.5))
model.add(Dense(43, activation='softmax'))
Вот мой код:
import torch.nn.functional as F
import torch
# The network should inherit from the nn.Module
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# Define 2D convolution layers
# 3: input channels, 32: output channels, 5: kernel size, 1: stride
self.conv1 = nn.Conv2d(3, 32, 5, 1) # The size of input channel is 3 because all images are coloured
self.conv2 = nn.Conv2d(32, 64, 5, 1)
self.conv3 = nn.Conv2d(64, 128, 3, 1)
self.conv3 = nn.Conv2d(128, 256, 3, 1)
# It will 'filter' out some of the input by the probability(assign zero)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
# Fully connected layer: input size, output size
self.fc1 = nn.Linear(36864, 128)
self.fc2 = nn.Linear(128, 10)
# forward() link all layers together,
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = self.conv3(x)
x = F.relu(x)
x = self.conv4(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
Заранее спасибо!