Ошибка возникает из-за того, что ваш код пытается загрузить несуществующую модель. Из файла записной книжки, который вы связали, вам, скорее всего, придется запустить следующее:
from werkzeug.wrappers import Request, Response
from flask import Flask
app = Flask(__name__)
@app.route("/")
def hello():
return "Hello World!"
if __name__ == '__main__':
from werkzeug.serving import run_simple
run_simple('localhost', 9000, app)
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation
from sklearn.model_selection import train_test_split
from tensorflow.keras.callbacks import EarlyStopping
import pandas as pd
import io
import os
import requests
import numpy as np
from sklearn import metrics
df = pd.read_csv(
"https://data.heatonresearch.com/data/t81-558/auto-mpg.csv",
na_values=['NA', '?'])
cars = df['name']
# Handle missing value
df['horsepower'] = df['horsepower'].fillna(df['horsepower'].median())
# Pandas to Numpy
x = df[['cylinders', 'displacement', 'horsepower', 'weight',
'acceleration', 'year', 'origin']].values
y = df['mpg'].values # regression
# Split into validation and training sets
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.25, random_state=42)
# Build the neural network
model = Sequential()
model.add(Dense(25, input_dim=x.shape[1], activation='relu')) # Hidden 1
model.add(Dense(10, activation='relu')) # Hidden 2
model.add(Dense(1)) # Output
model.compile(loss='mean_squared_error', optimizer='adam')
monitor = EarlyStopping(monitor='val_loss', min_delta=1e-3, patience=5, verbose=1, mode='auto',
restore_best_weights=True)
model.fit(x_train,y_train,validation_data=(x_test,y_test),callbacks=[monitor],verbose=2,epochs=1000)
pred = model.predict(x_test)
# Measure RMSE error. RMSE is common for regression.
score = np.sqrt(metrics.mean_squared_error(pred,y_test))
print(f"After load score (RMSE): {score}")
model.save(os.path.join("./dnn/","mpg_model.h5"))
Это обучит и сохранит модель, которую загружает ваш код.
Также похоже, что вы есть небольшая опечатка в строке: model = load_model(os.path.join("../dnn/","mpg_model.h5"))
, которую следует заменить на model = load_model(os.path.join("./dnn/","mpg_model.h5"))