Описание
В соответствии с командой explain
существует диапазон, при котором запрос выполняет полное сканирование таблицы (160 тыс. Строк). Как мне сохранить условия дальности и уменьшить сканирование? Я ожидаю, что виновником будет:
Y.YEAR BETWEEN 1900 AND 2009 AND
Код
Вот код с условием диапазона (STATION_DISTRICT
, скорее всего, излишний).
SELECT
COUNT(1) as MEASUREMENTS,
AVG(D.AMOUNT) as AMOUNT,
Y.YEAR as YEAR,
MAKEDATE(Y.YEAR,1) as AMOUNT_DATE
FROM
CITY C,
STATION S,
STATION_DISTRICT SD,
YEAR_REF Y FORCE INDEX(YEAR_IDX),
MONTH_REF M,
DAILY D
WHERE
-- For a specific city ...
--
C.ID = 10663 AND
-- Find all the stations within a specific unit radius ...
--
6371.009 *
SQRT(
POW(RADIANS(C.LATITUDE_DECIMAL - S.LATITUDE_DECIMAL), 2) +
(COS(RADIANS(C.LATITUDE_DECIMAL + S.LATITUDE_DECIMAL) / 2) *
POW(RADIANS(C.LONGITUDE_DECIMAL - S.LONGITUDE_DECIMAL), 2)) ) <= 50 AND
-- Get the station district identification for the matching station.
--
S.STATION_DISTRICT_ID = SD.ID AND
-- Gather all known years for that station ...
--
Y.STATION_DISTRICT_ID = SD.ID AND
-- The data before 1900 is shaky; insufficient after 2009.
--
Y.YEAR BETWEEN 1900 AND 2009 AND
-- Filtered by all known months ...
--
M.YEAR_REF_ID = Y.ID AND
-- Whittled down by category ...
--
M.CATEGORY_ID = '003' AND
-- Into the valid daily climate data.
--
M.ID = D.MONTH_REF_ID AND
D.DAILY_FLAG_ID <> 'M'
GROUP BY
Y.YEAR
Обновление
SQL выполняет полное сканирование таблицы, в результате чего MySQL выполняет «копирование в таблицу tmp», как показано здесь:
+----+-------------+-------+--------+-----------------------------------+--------------+---------+-------------------------------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+-----------------------------------+--------------+---------+-------------------------------+--------+-------------+
| 1 | SIMPLE | C | const | PRIMARY | PRIMARY | 4 | const | 1 | |
| 1 | SIMPLE | Y | range | YEAR_IDX | YEAR_IDX | 4 | NULL | 160422 | Using where |
| 1 | SIMPLE | SD | eq_ref | PRIMARY | PRIMARY | 4 | climate.Y.STATION_DISTRICT_ID | 1 | Using index |
| 1 | SIMPLE | S | eq_ref | PRIMARY | PRIMARY | 4 | climate.SD.ID | 1 | Using where |
| 1 | SIMPLE | M | ref | PRIMARY,YEAR_REF_IDX,CATEGORY_IDX | YEAR_REF_IDX | 8 | climate.Y.ID | 54 | Using where |
| 1 | SIMPLE | D | ref | INDEX | INDEX | 8 | climate.M.ID | 11 | Using where |
+----+-------------+-------+--------+-----------------------------------+--------------+---------+-------------------------------+--------+-------------+
Ответ
После использования STRAIGHT_JOIN
:
+----+-------------+-------+--------+-----------------------------------+---------------+---------+-------------------------------+------+---------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+-----------------------------------+---------------+---------+-------------------------------+------+---------------------------------+
| 1 | SIMPLE | C | const | PRIMARY | PRIMARY | 4 | const | 1 | Using temporary; Using filesort |
| 1 | SIMPLE | S | ALL | PRIMARY | NULL | NULL | NULL | 7795 | Using where |
| 1 | SIMPLE | SD | eq_ref | PRIMARY | PRIMARY | 4 | climate.S.STATION_DISTRICT_ID | 1 | Using index |
| 1 | SIMPLE | Y | ref | PRIMARY,STAT_YEAR_IDX | STAT_YEAR_IDX | 4 | climate.S.STATION_DISTRICT_ID | 1650 | Using where |
| 1 | SIMPLE | M | ref | PRIMARY,YEAR_REF_IDX,CATEGORY_IDX | YEAR_REF_IDX | 8 | climate.Y.ID | 54 | Using where |
| 1 | SIMPLE | D | ref | INDEX | INDEX | 8 | climate.M.ID | 11 | Using where |
+----+-------------+-------+--------+-----------------------------------+---------------+---------+-------------------------------+------+---------------------------------+
Относящиеся
Спасибо!