Я пытаюсь преобразовать мой data.frame путем вычисления log-differences
каждого столбца
и управление для строк id
. Так что в основном мне нравится рассчитывать темпы роста для каждой переменной id .
Итак, вот случайный df со столбцом id, столбцом периода времени p и тремя переменными столбцами:
df <- data.frame (id = c("a","a","a","c","c","d","d","d","d","d"),
p = c(1,2,3,1,2,1,2,3,4,5),
var1 = rnorm(10, 5),
var2 = rnorm(10, 5),
var3 = rnorm(10, 5)
)
df
id p var1 var2 var3
1 a 1 5.375797 4.110324 5.773473
2 a 2 4.574700 6.541862 6.116153
3 a 3 3.029428 4.931924 5.631847
4 c 1 5.375855 4.181034 5.756510
5 c 2 5.067131 6.053009 6.746442
6 d 1 3.846438 4.515268 6.920389
7 d 2 4.910792 5.525340 4.625942
8 d 3 6.410238 5.138040 7.404533
9 d 4 4.637469 3.522542 3.661668
10 d 5 5.519138 4.599829 5.566892
Теперь я написал функцию, которая делает именно то, что я хочу, НО мне пришлось сделать обход, который, возможно, не нужен и может быть удален. Тем не менее, как-то я не могу найти
ярлык
Вот функция и вывод для размещенного фрейма данных:
fct.logDiff <- function (df) {
df.log <- dlply (df, "code", function(x) data.frame (p = x$p, log(x[, -c(1,2)])))
list.nalog <- llply (df.log, function(x) data.frame (p = x$p, rbind(NA, sapply(x[,-1], diff))))
ldply (list.nalog, data.frame)
}
fct.logDiff(df)
id p var1 var2 var3
1 a 1 NA NA NA
2 a 2 -0.16136569 0.46472004 0.05765945
3 a 3 -0.41216720 -0.28249264 -0.08249587
4 c 1 NA NA NA
5 c 2 -0.05914281 0.36999681 0.15868378
6 d 1 NA NA NA
7 d 2 0.24428771 0.20188025 -0.40279188
8 d 3 0.26646102 -0.07267311 0.47041227
9 d 4 -0.32372771 -0.37748866 -0.70417351
10 d 5 0.17405309 0.26683625 0.41891802
Проблема связана с добавленными NA
-траусами. Я не хочу свернуть фрейм и уменьшить его, что будет автоматически сделано функцией diff()
. Таким образом, у меня было 10 строк в моем исходном кадре, и я сохраняю такое же количество строк после преобразования. Чтобы сохранить одинаковую длину, мне пришлось добавить NAs
. Я пошел в обход, преобразовав data.frame в список, добавив NAs
к первой строке каждого идентификатора, а затем преобразовал список обратно в data.frame. Это выглядит утомительно.
Есть идеи, как избежать преобразования класса data.frame-list-data.frame и оптимизировать функцию?