Я создал решение на основе CUDA, основанное на втором алгоритме Карла Смотрица. Сам код для идентификации Self Numbers очень быстрый - на моей машине он выполняется за ~ 45 наносекунд; это примерно в 150 раз быстрее, чем алгоритм Карла Смотрица, который работал на моей машине за 7 миллисекунд.
Однако существует узкое место, и похоже, что это интерфейс PCIe. Мой код потратил целых 43 миллисекунды, чтобы переместить вычисленные данные с графической карты обратно в RAM. Это может быть оптимизировано, и я посмотрю на это.
Тем не менее, 45 наноседонов чертовски быстро. Страшно быстро, на самом деле, и я добавил в свою программу код, который запускает алгоритм Карла Смотрица и сравнивает результаты на точность. Результаты точны. Вот вывод программы (скомпилирован в VS2008 64-bit, Windows7):
UPDATE
Я перекомпилировал этот код в режиме выпуска с полной оптимизацией и использованием статических библиотек времени выполнения, что дало значительные результаты. Оптимизатор, похоже, очень хорошо справился с алгоритмом Карла, сократив время выполнения с 7 мс до 1 мс. Реализация CUDA также ускорилась, с 35 до 20 человек. Копирование памяти с видеокарты в ОЗУ не было затронуто.
Вывод программы:
Running on device: 'Quadro NVS 295'
Reference Implementation Ran In 15603 ticks (7 ms)
Kernel Executed in 40 ms -- Breakdown:
[kernel] : 35 us (0.09%)
[memcpy] : 40 ms (99.91%)
CUDA Implementation Ran In 111889 ticks (51 ms)
Compute Slots: 1000448 (1954 blocks X 512 threads)
Number of Errors: 0
Код выглядит следующим образом:
файл: main.h
#pragma once
#include <cstdlib>
#include <functional>
typedef std::pair<int*, size_t> sized_ptr;
static sized_ptr make_sized_ptr(int* ptr, size_t size)
{
return make_pair<int*, size_t>(ptr, size);
}
__host__ void ComputeSelfNumbers(sized_ptr hostMem, sized_ptr deviceMemory, unsigned const blocks, unsigned const threads);
inline std::string format_elapsed(double d)
{
char buf[256] = {0};
if( d < 0.00000001 )
{
// show in ps with 4 digits
sprintf(buf, "%0.4f ps", d * 1000000000000.0);
}
else if( d < 0.00001 )
{
// show in ns
sprintf(buf, "%0.0f ns", d * 1000000000.0);
}
else if( d < 0.001 )
{
// show in us
sprintf(buf, "%0.0f us", d * 1000000.0);
}
else if( d < 0.1 )
{
// show in ms
sprintf(buf, "%0.0f ms", d * 1000.0);
}
else if( d <= 60.0 )
{
// show in seconds
sprintf(buf, "%0.2f s", d);
}
else if( d < 3600.0 )
{
// show in min:sec
sprintf(buf, "%01.0f:%02.2f", floor(d/60.0), fmod(d,60.0));
}
// show in h:min:sec
else
sprintf(buf, "%01.0f:%02.0f:%02.2f", floor(d/3600.0), floor(fmod(d,3600.0)/60.0), fmod(d,60.0));
return buf;
}
inline std::string format_pct(double d)
{
char buf[256] = {0};
sprintf(buf, "%.2f", 100.0 * d);
return buf;
}
файл: main.cpp
#define _CRT_SECURE_NO_WARNINGS
#include <windows.h>
#include "C:\CUDA\include\cuda_runtime.h"
#include <cstdlib>
#include <iostream>
#include <string>
using namespace std;
#include <cmath>
#include <map>
#include <algorithm>
#include <list>
#include "main.h"
int main()
{
unsigned numVals = 1000000;
int* gold = new int[numVals];
memset(gold, 0, sizeof(int)*numVals);
LARGE_INTEGER li = {0}, li2 = {0};
QueryPerformanceFrequency(&li);
__int64 freq = li.QuadPart;
// get cuda properties...
cudaDeviceProp cdp = {0};
cudaError_t err = cudaGetDeviceProperties(&cdp, 0);
cout << "Running on device: '" << cdp.name << "'" << endl;
// first run the reference implementation
QueryPerformanceCounter(&li);
for( int j6=0, n = 0; j6<10; j6++ )
{
for( int j5=0; j5<10; j5++ )
{
for( int j4=0; j4<10; j4++ )
{
for( int j3=0; j3<10; j3++ )
{
for( int j2=0; j2<10; j2++ )
{
for( int j1=0; j1<10; j1++ )
{
int s = j6 + j5 + j4 + j3 + j2 + j1;
gold[n + s] = 1;
n++;
}
}
}
}
}
}
QueryPerformanceCounter(&li2);
__int64 ticks = li2.QuadPart-li.QuadPart;
cout << "Reference Implementation Ran In " << ticks << " ticks" << " (" << format_elapsed((double)ticks/(double)freq) << ")" << endl;
// now run the cuda version...
unsigned threads = cdp.maxThreadsPerBlock;
unsigned blocks = numVals/threads;
if( numVals%threads ) ++blocks;
unsigned computeSlots = blocks * threads; // this may be != the number of vals since we want 32-thread warps
// allocate device memory for test
int* deviceTest = 0;
err = cudaMalloc(&deviceTest, sizeof(int)*computeSlots);
err = cudaMemset(deviceTest, 0, sizeof(int)*computeSlots);
int* hostTest = new int[numVals]; // the repository for the resulting data on the host
memset(hostTest, 0, sizeof(int)*numVals);
// run the CUDA code...
LARGE_INTEGER li3 = {0}, li4={0};
QueryPerformanceCounter(&li3);
ComputeSelfNumbers(make_sized_ptr(hostTest, numVals), make_sized_ptr(deviceTest, computeSlots), blocks, threads);
QueryPerformanceCounter(&li4);
__int64 ticksCuda = li4.QuadPart-li3.QuadPart;
cout << "CUDA Implementation Ran In " << ticksCuda << " ticks" << " (" << format_elapsed((double)ticksCuda/(double)freq) << ")" << endl;
cout << "Compute Slots: " << computeSlots << " (" << blocks << " blocks X " << threads << " threads)" << endl;
unsigned errorCount = 0;
for( size_t i = 0; i < numVals; ++i )
{
if( gold[i] != hostTest[i] )
{
++errorCount;
}
}
cout << "Number of Errors: " << errorCount << endl;
return 0;
}
файл: self.cu
#pragma warning( disable : 4231)
#include <windows.h>
#include <cstdlib>
#include <vector>
#include <iostream>
#include <string>
#include <iomanip>
using namespace std;
#include "main.h"
__global__ void SelfNum(int * slots)
{
__shared__ int N;
N = (blockIdx.x * blockDim.x) + threadIdx.x;
const int numDigits = 10;
__shared__ int digits[numDigits];
for( int i = 0, temp = N; i < numDigits; ++i, temp /= 10 )
{
digits[numDigits-i-1] = temp - 10 * (temp/10) /*temp % 10*/;
}
__shared__ int s;
s = 0;
for( int i = 0; i < numDigits; ++i )
s += digits[i];
slots[N+s] = 1;
}
__host__ void ComputeSelfNumbers(sized_ptr hostMem, sized_ptr deviceMem, const unsigned blocks, const unsigned threads)
{
LARGE_INTEGER li = {0};
QueryPerformanceFrequency(&li);
double freq = (double)li.QuadPart;
LARGE_INTEGER liStart = {0};
QueryPerformanceCounter(&liStart);
// run the kernel
SelfNum<<<blocks, threads>>>(deviceMem.first);
LARGE_INTEGER liKernel = {0};
QueryPerformanceCounter(&liKernel);
cudaMemcpy(hostMem.first, deviceMem.first, hostMem.second*sizeof(int), cudaMemcpyDeviceToHost); // dont copy the overflow - just throw it away
LARGE_INTEGER liMemcpy = {0};
QueryPerformanceCounter(&liMemcpy);
// display performance stats
double e = double(liMemcpy.QuadPart - liStart.QuadPart)/freq,
eKernel = double(liKernel.QuadPart - liStart.QuadPart)/freq,
eMemcpy = double(liMemcpy.QuadPart - liKernel.QuadPart)/freq;
double pKernel = eKernel/e,
pMemcpy = eMemcpy/e;
cout << "Kernel Executed in " << format_elapsed(e) << " -- Breakdown: " << endl
<< " [kernel] : " << format_elapsed(eKernel) << " (" << format_pct(pKernel) << "%)" << endl
<< " [memcpy] : " << format_elapsed(eMemcpy) << " (" << format_pct(pMemcpy) << "%)" << endl;
}
UPDATE2:
Я реорганизовал мою реализацию CUDA, чтобы попытаться немного ускорить ее. Я сделал это, развернув циклы вручную, исправив сомнительное использование памяти __shared__
, которая могла быть ошибкой, и избавившись от некоторой избыточности.
Вывод моего нового ядра:
Reference Implementation Ran In 69610 ticks (5 ms)
Kernel Executed in 2 ms -- Breakdown:
[kernel] : 39 us (1.57%)
[memcpy] : 2 ms (98.43%)
CUDA Implementation Ran In 62970 ticks (4 ms)
Compute Slots: 1000448 (1954 blocks X 512 threads)
Number of Errors: 0
Единственный код, который я изменил, - это само ядро, поэтому это все, что я опубликую здесь:
__global__ void SelfNum(int * slots)
{
int N = (blockIdx.x * blockDim.x) + threadIdx.x;
int s = 0;
int temp = N;
s += temp - 10 * (temp/10) /*temp % 10*/;
s += temp - 10 * ((temp/=10)/10) /*temp % 10*/;
s += temp - 10 * ((temp/=10)/10) /*temp % 10*/;
s += temp - 10 * ((temp/=10)/10) /*temp % 10*/;
s += temp - 10 * ((temp/=10)/10) /*temp % 10*/;
s += temp - 10 * ((temp/=10)/10) /*temp % 10*/;
s += temp - 10 * ((temp/=10)/10) /*temp % 10*/;
s += temp - 10 * ((temp/=10)/10) /*temp % 10*/;
s += temp - 10 * ((temp/=10)/10) /*temp % 10*/;
s += temp - 10 * ((temp/=10)/10) /*temp % 10*/;
slots[N+s] = 1;
}