Я думаю, что ваш код не совсем правильный. Вы используете абсолютную гистограмму изображения вместо относительной гистограммы, которая используется в статье. Кроме того, ваш код довольно неэффективен, так как он вычисляет две гистограммы для каждого возможного порога. Я сам реализовал алгоритм. Может быть, кто-то может использовать это:
function [ optimalThreshold, J ] = kittlerMinimimErrorThresholding( img )
%KITTLERMINIMIMERRORTHRESHOLDING Compute an optimal image threshold.
% Computes the Minimum Error Threshold as described in
%
% 'J. Kittler and J. Illingworth, "Minimum Error Thresholding," Pattern
% Recognition 19, 41-47 (1986)'.
%
% The image 'img' is expected to have integer values from 0 to 255.
% 'optimalThreshold' holds the found threshold. 'J' holds the values of
% the criterion function.
%Initialize the criterion function
J = Inf * ones(255, 1);
%Compute the relative histogram
histogram = double(histc(img(:), 0:255)) / size(img(:), 1);
%Walk through every possible threshold. However, T is interpreted
%differently than in the paper. It is interpreted as the lower boundary of
%the second class of pixels rather than the upper boundary of the first
%class. That is, an intensity of value T is treated as being in the same
%class as higher intensities rather than lower intensities.
for T = 1:255
%Split the hostogram at the threshold T.
histogram1 = histogram(1:T);
histogram2 = histogram((T+1):end);
%Compute the number of pixels in the two classes.
P1 = sum(histogram1);
P2 = sum(histogram2);
%Only continue if both classes contain at least one pixel.
if (P1 > 0) && (P2 > 0)
%Compute the standard deviations of the classes.
mean1 = sum(histogram1 .* (1:T)') / P1;
mean2 = sum(histogram2 .* (1:(256-T))') / P2;
sigma1 = sqrt(sum(histogram1 .* (((1:T)' - mean1) .^2) ) / P1);
sigma2 = sqrt(sum(histogram2 .* (((1:(256-T))' - mean2) .^2) ) / P2);
%Only compute the criterion function if both classes contain at
%least two intensity values.
if (sigma1 > 0) && (sigma2 > 0)
%Compute the criterion function.
J(T) = 1 + 2 * (P1 * log(sigma1) + P2 * log(sigma2)) ...
- 2 * (P1 * log(P1) + P2 * log(P2));
end
end
end
%Find the minimum of J.
[~, optimalThreshold] = min(J);
optimalThreshold = optimalThreshold - 0.5;