Это можно сделать в квадратичном кубическом квадратичном времени с помощью динамического программирования.
Вот код Python:
import sys
import numpy as np
bignum = 10000
S = sys.argv[1] #'AAABBAAABBCECE'
N = len(S)
# length of longest substring match bet s[i:] and s[j:]
maxmatch = np.zeros( (N+1,N+1), dtype=int)
for i in xrange(N-1,-1,-1):
for j in xrange(i+1,N):
if S[i] == S[j]:
maxmatch[i,j] = maxmatch[i+1,j+1]+1
# P[n,k] = cost of encoding first n characters given that last k are a block
P = np.zeros( (N+1,N+1),dtype=int ) + bignum
# Q[n] = cost of encoding first n characters
Q = np.zeros(N+1, dtype=int) + bignum
# base case: no cost for empty string
P[0,0]=0
Q[0]=0
for n in xrange(1,N+1):
for k in xrange(1,n+1):
if n-2*k >= 0:
# s1, s2 = S[n-k:n], S[n-2*k:n-k]
# if s1 == s2:
if maxmatch[n-2*k,n-k] >=k:
# Here we are incrementing the count: C x_1...x_k -> C+1 x_1...x_k
P[n,k] = min(P[n,k], P[n-k,k])
print 'P[%d,%d] = %d' % (n,k,P[n,k])
# Here we are starting a new block: 1 x_1...x_k
P[n,k] = min(P[n,k], Q[n-k] + 1 + k)
print 'P[%d,%d] = %d' % (n,k,P[n,k])
for k in xrange(1,n+1):
Q[n] = min(Q[n], P[n,k])
print
print Q[N]
Вы можете восстановить фактическую кодировку, помня свой выбор по пути.
Я исключил небольшую складку, которая заключается в том, что нам, возможно, придется использовать дополнительный байт для удержания C + 1, если C велико. Если вы используете 32-битные целочисленные значения, это не возникнет ни в каком контексте, где возможно выполнение этого алгоритма. Если вы иногда используете более короткие целые числа для экономии места, вам придется подумать об этом и, возможно, добавить другое измерение в таблицу на основе размера последнего C. В теории это может добавить коэффициент log (N), но Я не думаю, что это будет очевидно на практике.
Редактировать: Для удобства @Moron, вот тот же код с большим количеством операторов печати, чтобы вы могли легче увидеть, что думает алгоритм:
import sys
import numpy as np
bignum = 10000
S = sys.argv[1] #'AAABBAAABBCECE'
N = len(S)
# length of longest substring match bet s[i:] and s[j:]
maxmatch = np.zeros( (N+1,N+1), dtype=int)
for i in xrange(N-1,-1,-1):
for j in xrange(i+1,N):
if S[i] == S[j]:
maxmatch[i,j] = maxmatch[i+1,j+1]+1
# P[n,k] = cost of encoding first n characters given that last k are a block
P = np.zeros( (N+1,N+1),dtype=int ) + bignum
# Q[n] = cost of encoding first n characters
Q = np.zeros(N+1, dtype=int) + bignum
# base case: no cost for empty string
P[0,0]=0
Q[0]=0
for n in xrange(1,N+1):
for k in xrange(1,n+1):
if n-2*k >= 0:
# s1, s2 = S[n-k:n], S[n-2*k:n-k]
# if s1 == s2:
if maxmatch[n-2*k,n-k] >=k:
# Here we are incrementing the count: C x_1...x_k -> C+1 x_1...x_k
P[n,k] = min(P[n,k], P[n-k,k])
print "P[%d,%d] = %d\t I can encode first %d characters of S in only %d characters if I use my solution for P[%d,%d] with %s's count incremented" % (n\
,k,P[n,k],n,P[n-k,k],n-k,k,S[n-k:n])
# Here we are starting a new block: 1 x_1...x_k
P[n,k] = min(P[n,k], Q[n-k] + 1 + k)
print 'P[%d,%d] = %d\t I can encode first %d characters of S in only %d characters if I use my solution for Q[%d] with a new block 1%s' % (n,k,P[n,k],n,Q[\
n-k]+1+k,n-k,S[n-k:n])
for k in xrange(1,n+1):
Q[n] = min(Q[n], P[n,k])
print
print 'Q[%d] = %d\t I can encode first %d characters of S in only %d characters!' % (n,Q[n],n,Q[n])
print
print Q[N]
Последние несколько строк его вывода на ABCDABCDABCDBCD выглядят так:
Q[13] = 7 I can encode first 13 characters of S in only 7 characters!
P[14,1] = 9 I can encode first 14 characters of S in only 9 characters if I use my solution for Q[13] with a new block 1C
P[14,2] = 8 I can encode first 14 characters of S in only 8 characters if I use my solution for Q[12] with a new block 1BC
P[14,3] = 13 I can encode first 14 characters of S in only 13 characters if I use my solution for Q[11] with a new block 1DBC
P[14,4] = 13 I can encode first 14 characters of S in only 13 characters if I use my solution for Q[10] with a new block 1CDBC
P[14,5] = 13 I can encode first 14 characters of S in only 13 characters if I use my solution for Q[9] with a new block 1BCDBC
P[14,6] = 12 I can encode first 14 characters of S in only 12 characters if I use my solution for Q[8] with a new block 1ABCDBC
P[14,7] = 16 I can encode first 14 characters of S in only 16 characters if I use my solution for Q[7] with a new block 1DABCDBC
P[14,8] = 16 I can encode first 14 characters of S in only 16 characters if I use my solution for Q[6] with a new block 1CDABCDBC
P[14,9] = 16 I can encode first 14 characters of S in only 16 characters if I use my solution for Q[5] with a new block 1BCDABCDBC
P[14,10] = 16 I can encode first 14 characters of S in only 16 characters if I use my solution for Q[4] with a new block 1ABCDABCDBC
P[14,11] = 16 I can encode first 14 characters of S in only 16 characters if I use my solution for Q[3] with a new block 1DABCDABCDBC
P[14,12] = 16 I can encode first 14 characters of S in only 16 characters if I use my solution for Q[2] with a new block 1CDABCDABCDBC
P[14,13] = 16 I can encode first 14 characters of S in only 16 characters if I use my solution for Q[1] with a new block 1BCDABCDABCDBC
P[14,14] = 15 I can encode first 14 characters of S in only 15 characters if I use my solution for Q[0] with a new block 1ABCDABCDABCDBC
Q[14] = 8 I can encode first 14 characters of S in only 8 characters!
P[15,1] = 10 I can encode first 15 characters of S in only 10 characters if I use my solution for Q[14] with a new block 1D
P[15,2] = 10 I can encode first 15 characters of S in only 10 characters if I use my solution for Q[13] with a new block 1CD
P[15,3] = 11 I can encode first 15 characters of S in only 11 characters if I use my solution for P[12,3] with BCD's count incremented
P[15,3] = 9 I can encode first 15 characters of S in only 9 characters if I use my solution for Q[12] with a new block 1BCD
P[15,4] = 14 I can encode first 15 characters of S in only 14 characters if I use my solution for Q[11] with a new block 1DBCD
P[15,5] = 14 I can encode first 15 characters of S in only 14 characters if I use my solution for Q[10] with a new block 1CDBCD
P[15,6] = 14 I can encode first 15 characters of S in only 14 characters if I use my solution for Q[9] with a new block 1BCDBCD
P[15,7] = 13 I can encode first 15 characters of S in only 13 characters if I use my solution for Q[8] with a new block 1ABCDBCD
P[15,8] = 17 I can encode first 15 characters of S in only 17 characters if I use my solution for Q[7] with a new block 1DABCDBCD
P[15,9] = 17 I can encode first 15 characters of S in only 17 characters if I use my solution for Q[6] with a new block 1CDABCDBCD
P[15,10] = 17 I can encode first 15 characters of S in only 17 characters if I use my solution for Q[5] with a new block 1BCDABCDBCD
P[15,11] = 17 I can encode first 15 characters of S in only 17 characters if I use my solution for Q[4] with a new block 1ABCDABCDBCD
P[15,12] = 17 I can encode first 15 characters of S in only 17 characters if I use my solution for Q[3] with a new block 1DABCDABCDBCD
P[15,13] = 17 I can encode first 15 characters of S in only 17 characters if I use my solution for Q[2] with a new block 1CDABCDABCDBCD
P[15,14] = 17 I can encode first 15 characters of S in only 17 characters if I use my solution for Q[1] with a new block 1BCDABCDABCDBCD
P[15,15] = 16 I can encode first 15 characters of S in only 16 characters if I use my solution for Q[0] with a new block 1ABCDABCDABCDBCD
Q[15] = 9 I can encode first 15 characters of S in only 9 characters!