Я создал такую игру, первое, что я сделал на C ++ (кому нужен привет, мир: P)
И каждый может использовать его, если захочет.
Только не забывайте, что это моя первая вещь на C ++, и она определенно не кодирована должным образом: P, но в ней есть несколько хороших вещей на C ++. Но там есть алгоритм поиска, оптимизированный на 100%, который проверяет абсолютное наименьшее количество требуемой перестановки, чтобы проверить три выигрышных условия подряд с интенсивным комментированием и искусством ASCII. Это может быть весьма полезно.
О, почти забыл упоминание, это штука с консольным приложением (черный экран DOS envi, как бы он ни назывался). У него есть ИИ, который (если это моя последняя версия) должен хорошо работать. И сетка построена динамически (это была сложная часть). Вы можете играть 3 подряд, но с сеткой макс. 20x20 (хромая игра, которую я обнаружил, намного веселее, чем 4 подряд с гравитацией)
Вот, пожалуйста,
// DrieOpEenRij.cpp : Defines the entry point for the console application.
#include "stdafx.h"
#include <iostream>
#include <string>
#include <typeinfo>
using namespace std;
typedef unsigned short USHORT;
//USE ONLY IN A SQUARE GRID
//This method checks a win for the minimimum amount of spaces covering 100% amount of the grid
//It has 100% coverage and close to 0% overhead, discrimination between who to check for is required and
//so currentMove char is required to check for win on 'H' human and 'C' Computer
void CheckForWin(const char* Grid_ptr , const USHORT GridSize , const USHORT GridWidth ,bool &humanWin, bool &computerWin, const char currentMove)
{
//check for an x from 1-end of array
//for all x's check if that makes a 3 line once per linetype
//check for horizontal win (dont get overhead on edges)
//A non square grid will have been detected by now
const USHORT rowStart = 0;
const USHORT rowEnd = GridWidth-1;
USHORT passRowCounter = 1;
const USHORT Side = GridWidth;
const USHORT cond1 = rowEnd-2;
const USHORT cond2 = GridSize-Side*2;
//Check for all human win options ( after a human move )
if (currentMove == 'H')
{
//Check for human win code
//Check all array slots for an occurence of 'X'
for(USHORT i = 0; i < GridSize; i++)
{
//Local stack variables, optimizations for iterations in loops and if statements,
//also for readability, this is (only efficient and) done only when it is guaranteed
//to be used in every for jump.
USHORT iModSide = i % Side;
USHORT SideMinTwo = Side - 2;
USHORT SidePlusTwo = Side + 2;
USHORT iPlusSide = i + Side;
USHORT iPlusSideTimesTwo = i + Side * 2;
USHORT iPlusOne = i + 1;
USHORT iPlusTwo = i + 2;
//If an X is found evaluate a win scenario
if (Grid_ptr[i] == 'X')
{
//For each row -->
if (iModSide < SideMinTwo)
{
//Check horizontal win from left to right
if (Grid_ptr[i + 1] == 'X' && Grid_ptr[i + 2] == 'X')
{
humanWin = true;
break;
}
}
//For the two values under the 'X' (colomn wise) check for 'X''X'
if (iPlusSideTimesTwo < GridSize)
{
if(Grid_ptr[iPlusSide] == 'X' && Grid_ptr[iPlusSideTimesTwo] == 'X')
{
humanWin = true;
break;
}
}
//CHECK FOR DIAGONAL WIN FROM TOP LEFT TO DOWN RIGHT IN ALL POSSIBLE+LEGAL SLOTS!
// [X] [X] [?] [?] This illustration shows that checking only at X will suffice
// [X] [X] [?] [?] for this specific check in screening for all Top Left --> Down Right
// [?] [?] [?] [?] diagonal wins, similarly the Top Right --> Down Left is done mirrored
// [?] [?] [?] [?] All other wins using this vector are impossible!
// Using this amount of conditions to find it saves a lot of searching and with it time
if (iPlusSideTimesTwo < GridSize && iModSide < SideMinTwo)
{
if (Grid_ptr[i+Side+1] == 'X' && Grid_ptr[iPlusSideTimesTwo+2] == 'X')
{
humanWin = true;
break;
}
}
//CHECK FOR DIAGONAL WIN FROM TOP LEFT TO DOWN RIGHT IN ALL POSSIBLE+LEGAL SLOTS!
// [?] [?] [Y] [Y] This illustration shows that checking only at Y will suffice
// [?] [?] [Y] [Y] for this specific check in screening for all Top Right --> Down Left
// [?] [?] [?] [?] diagonal wins, similarly the Top Left --> Down Right is done mirrored
// [?] [?] [?] [?] This because all other wins using this vector are impossible!
// Using this amount of conditions to find it saves a lot of searching and with it time
if (i % Side > 1 && i + Side*2-2 < GridSize)
{
if (Grid_ptr[i+Side-1] == 'X' && Grid_ptr[i+Side*2-2] == 'X')
{
humanWin = true;
break;
}
}
} //end if arrayvalue is 'X'
} //end for each value in array
} //end if currentMove 'H'
else if (currentMove == 'C')
{
//Check for human win code
//Check all array slots for an occurence of 'X'
for(USHORT i = 0; i < GridSize; i++)
{
//Local stack variables, optimizations for iterations in loops and if statements,
//also for readability, this is (only efficient and) done only when it is guaranteed
//to be used in every for jump.
USHORT iModSide = i % Side;
USHORT SideMinTwo = Side - 2;
USHORT SidePlusTwo = Side + 2;
USHORT iPlusSide = i + Side;
USHORT iPlusSideTimesTwo = i + Side * 2;
USHORT iPlusOne = i + 1;
USHORT iPlusTwo = i + 2;
//If an X is found evaluate a win scenario
if (Grid_ptr[i] == 'O')
{
//For each row -->
if (iModSide < SideMinTwo)
{
//Check horizontal win from left to right
if (Grid_ptr[i + 1] == 'O' && Grid_ptr[i + 2] == 'O')
{
computerWin = true;
break;
}
}
//For the two values under the 'O' (colomn wise) check for 'O''O'
if (iPlusSideTimesTwo < GridSize)
{
if(Grid_ptr[iPlusSide] == 'O' && Grid_ptr[iPlusSideTimesTwo] == 'O')
{
computerWin = true;
break;
}
}
//CHECK FOR DIAGONAL WIN FROM TOP LEFT TO DOWN RIGHT IN ALL POSSIBLE+LEGAL SLOTS!
// [X] [X] [?] [?] This illustration shows that checking only at X will suffice
// [X] [X] [?] [?] for this specific check in screening for all Top Left --> Down Right
// [?] [?] [?] [?] diagonal wins, similarly the Top Right --> Down Left is done mirrored
// [?] [?] [?] [?] All other wins using this vector are impossible!
// Using this amount of conditions to find it saves a lot of searching and with it time
if (iPlusSideTimesTwo < GridSize && iModSide < SideMinTwo)
{
if (Grid_ptr[i+Side+1] == 'O' && Grid_ptr[iPlusSideTimesTwo+2] == 'O')
{
computerWin = true;
break;
}
}
//CHECK FOR DIAGONAL WIN FROM TOP LEFT TO DOWN RIGHT IN ALL POSSIBLE+LEGAL SLOTS!
// [?] [?] [Y] [Y] This illustration shows that checking only at Y will suffice
// [?] [?] [Y] [Y] for this specific check in screening for all Top Right --> Down Left
// [?] [?] [?] [?] diagonal wins, similarly the Top Left --> Down Right is done mirrored
// [?] [?] [?] [?] This because all other wins using this vector are impossible!
// Using this amount of conditions to find it saves a lot of searching and with it time
if (iPlusSideTimesTwo+2 < GridSize && iModSide < SidePlusTwo)
{
if (Grid_ptr[i+Side-1] == 'O' && Grid_ptr[i+Side*2-2] == 'O')
{
computerWin = true;
break;
}
}
} //end if arrayvalue is 'O'
} //end for each value in array
}// else if currentMove 'C'
} //end method
//useAI(char* Grid_ptr) { }
//weighGrid (char* Grid_ptr) { for (USHORT i = 0; i < GridSize(find out); i++) {} }
void PrintGrid(char* Grid_ptr, USHORT GridWidth, USHORT GridHeight, USHORT GridSize)
{
//Abort this method if the Grid is not Square
if (GridWidth != GridHeight)
{
cout << "Warning! \n\nGrid is not square. This method will likely fail!" << endl;
cout << "Aborting method!" << endl;
cout << "Press a key to return to program";
}
else
{
//Since this code block's applicable to a square grid
//Width or Height is not relevant, both should work
//I have chosen to stick with Width everywhere.
USHORT rowStart = 0;
USHORT rowEnd = GridWidth-1;
USHORT passRowCounter = 1;
USHORT Side = GridSize / GridHeight;
for(USHORT i = 0; i < Side; i++)
{
//GO TO NEXT ROW CODE
rowEnd = Side * passRowCounter;
passRowCounter++;
//PRINT ALL IN THIS ROW
for (USHORT j = rowStart; j < rowEnd; j++)
{
cout << Grid_ptr[j];
}
rowStart = rowEnd;
cout << "\n";
}
}
}
void useAI(char* Grid_ptr, USHORT GridSize, USHORT GridWidth)
{
//Check all values in the array
//If the value is '?' weigh the priority
//else continue
//Weighing the priority
//If ('O' Present in legal ranges) add prio +1
//The AI Will function on this concept
//All array slots have a weight, the highest weight means the best position
//From top prio to lowest prio that means -->
//WIN IN ONE MOVE (weight + 50)
//NOT LOSE IN ONE MOVE (weight + 15)
//BLOCK ENEMY + LINK UP OWN ( Equal prio but stacks so both matter ) weight +1
//These weights are determined using 8 directional vectors sprouting from all 'X' and 'O' locations in the grid
//In it's path if it encounters on loc 1 'X' loc 2 + weight = 50 , and vice versa, else +1 for all 8 vectors
//Create a weightgrid to store the data
USHORT* WeightGrid_ptr = new USHORT[GridSize];
USHORT* fattest_ptr = new USHORT(0);
USHORT* fattestIndex_ptr = new USHORT(0);
USHORT Side = GridWidth;
//Suggestion for optimization , make a forumula table to play all 8 vectors instead
//Per vector u need Condition for the direction first space and next space. 24 statements in a list
//A bit complex and harder to read so for now went the east 8 vectors copy pasting. But aware of the
//solution none-the-less! Unfortunatly though it seems like a maze of code, it is well documented and
//it's length is over 50% due to optimizations.
for(USHORT i = 0; i < GridSize; i++)
{
if (Grid_ptr[i] == 'X')
{
//CHECK X --> Mid Right Vector
//If within allowed parameters
if(i % Side < Side-2)
{
if(Grid_ptr[i+1] == '?' && Grid_ptr[i+2] == '?')
{
WeightGrid_ptr[i+1] += 1;
WeightGrid_ptr[i+2] += 1;
}
else if(Grid_ptr[i+1] == 'X')
{
WeightGrid_ptr[i+2] += 15;
}
else if (Grid_ptr[i+2] == 'X')
{
WeightGrid_ptr[i+1] += 15;
}
}
//CHECK X --> Down Right Vector
//If within allowed parameters
if (i % Side < Side -2 && i + Side*2 < GridSize)
{
if (Grid_ptr[i+Side+1] == '?' && Grid_ptr[i+Side*2+2] == '?')
{
WeightGrid_ptr[i+Side+1] += 1;
WeightGrid_ptr[i+Side*2+2] += 1;
}
else if(Grid_ptr[i+Side+1] == 'X')
{
WeightGrid_ptr[i+Side*2+2] += 15;
}
else if (Grid_ptr[i+Side*2+2] == 'X')
{
WeightGrid_ptr[i+Side+1] += 15;
}
}
//CHECK X --> Down Mid Vector
//If within allowed paramaters
if (i + Side*2 < GridSize)
{
if (Grid_ptr[i+Side] == '?' && Grid_ptr[i+Side*2] == '?')
{
WeightGrid_ptr[i+Side] += 1;
WeightGrid_ptr[i+Side*2] += 1;
}
else if (Grid_ptr[i+Side] == 'X')
{
WeightGrid_ptr[i+Side*2] += 15;
}
else if (Grid_ptr[i+Side*2] == 'X')
{
WeightGrid_ptr[i+Side] += 15;
}
}
//CHECK X --> Down Left Vector
//If within allowed paramaters
if(i % Side > 1 && i + Side*2 < GridSize)
{
if (Grid_ptr[i + Side*2-1] == '?' && i + Side*2-2 == '?')
{
WeightGrid_ptr[i+Side*2-1] += 1;
WeightGrid_ptr[i+Side*2-2] += 1;
}
else if(Grid_ptr[i + Side*2-2] == 'X')
{
WeightGrid_ptr[i+Side*2-1] += 15;
}
else if(Grid_ptr[i+Side*2-1] == 'X')
{
WeightGrid_ptr[i+Side*2-2] += 15;
}
}
//CHECK X --> Mid Left Vector
//If within allowed parameters
if(i % Side > 1)
{
if (Grid_ptr[i-1] == '?' && Grid_ptr[i-2] == '?')
{
WeightGrid_ptr[i-1] += 1;
WeightGrid_ptr[i-2] += 1;
}
else if(Grid_ptr[i-1] == 'X')
{
WeightGrid_ptr[i-2] += 15;
}
else if(Grid_ptr[i-2] == 'X')
{
WeightGrid_ptr[i-1] += 15;
}
}
//CHECK X --> Top Left Vector
//If within allowed parameters
if( (i) % (Side > 1) && i > Side*2)
{
if (Grid_ptr[i-Side-1] == '?' && Grid_ptr[i-Side*2-2] == '?')
{
WeightGrid_ptr[i-Side-1] += 1;
WeightGrid_ptr[i-Side*2-2] += 1;
}
else if (Grid_ptr[i-Side-1] == 'X')
{
WeightGrid_ptr[i-Side*2-2] += 15;
}
else if (Grid_ptr[i-Side*2-2] == 'X')
{
WeightGrid_ptr[i-Side-1] += 15;
}
}
//CHECK X --> Mid Top Vector
//If within allowed parameters
if (i > Side*2)
{
if(Grid_ptr[i + Side] == '?' && Grid_ptr[i + Side*2] == '?')
{
WeightGrid_ptr[i + Side] += 1;
WeightGrid_ptr[i + Side*2] += 1;
}
else if(Grid_ptr[i + Side] == 'X')
{
WeightGrid_ptr[i + Side*2] += 15;
}
else if (Grid_ptr[i + Side*2] == 'X')
{
WeightGrid_ptr[i + Side] += 15;
}
}
} //end if 'X' detected
else if (Grid_ptr[i] == 'O')
{
//CHECK 8 VECTORS
//Add weights
//CHECK O --> Mid Right Vector
//If within allowed parameters
if(i % Side < Side-2)
{
if(Grid_ptr[i+1] == '?' && Grid_ptr[i+2] == '?')
{
WeightGrid_ptr[i+1] += 1;
WeightGrid_ptr[i+2] += 1;
}
else if(Grid_ptr[i+1] == 'O')
{
WeightGrid_ptr[i+2] += 50;
}
else if (Grid_ptr[i+2] == 'O')
{
WeightGrid_ptr[i+1] += 50;
}
}
//CHECK O --> Down Right Vector
//If within allowed parameters
if (i % Side < Side -2 && i + Side*2 < GridSize)
{
if (Grid_ptr[i+Side+1] == '?' && Grid_ptr[i+Side*2+2] == '?')
{
WeightGrid_ptr[i+Side+1] += 1;
WeightGrid_ptr[i+Side*2+2] += 1;
}
else if(Grid_ptr[i+Side+1] == 'O')
{
WeightGrid_ptr[i+Side*2+2] += 50;
}
else if (Grid_ptr[i+Side*2+2] == 'O')
{
WeightGrid_ptr[i+Side+1] += 50;
}
}
//CHECK O --> Down Mid Vector
//If within allowed paramaters
if (i + Side*2 < GridSize)
{
if (Grid_ptr[i+Side] == '?' && Grid_ptr[i+Side*2] == '?')
{
WeightGrid_ptr[i+Side] += 1;
WeightGrid_ptr[i+Side*2] += 1;
}
else if (Grid_ptr[i+Side] == 'O')
{
WeightGrid_ptr[i+Side*2] += 50;
}
else if (Grid_ptr[i+Side*2] == 'O')
{
WeightGrid_ptr[i+Side] += 50;
}
}
//CHECK O --> Down Left Vector
//If within allowed paramaters
if(i % Side > 1 && i + Side*2 < GridSize)
{
if (Grid_ptr[i + Side*2-1] == '?' && i + Side*2-2 == '?')
{
WeightGrid_ptr[i+Side*2-1] += 1;
WeightGrid_ptr[i+Side*2-2] += 1;
}
else if(Grid_ptr[i + Side*2-2] == 'O')
{
WeightGrid_ptr[i+Side*2-1] += 50;
}
else if(Grid_ptr[i+Side*2-1] == 'O')
{
WeightGrid_ptr[i+Side*2-2] += 50;
}
}
//CHECK O --> Mid Left Vector
//If within allowed parameters
if(i % Side > 1)
{
if (Grid_ptr[i-1] == '?' && Grid_ptr[i-2] == '?')
{
WeightGrid_ptr[i-1] += 1;
WeightGrid_ptr[i-2] += 1;
}
else if(Grid_ptr[i-1] == 'O')
{
WeightGrid_ptr[i-2] += 50;
}
else if(Grid_ptr[i-2] == 'O')
{
WeightGrid_ptr[i-1] += 50;
}
}
//CHECK O --> Top Left Vector
//If within allowed parameters
if( (i) & (Side > 1) && i > Side*2)
{
if (Grid_ptr[i-Side-1] == '?' && Grid_ptr[i-Side*2-2] == '?')
{
WeightGrid_ptr[i-Side-1] += 1;
WeightGrid_ptr[i-Side*2-2] += 1;
}
else if (Grid_ptr[i-Side-1] == 'O')
{
WeightGrid_ptr[i-Side*2-2] += 50;
}
else if (Grid_ptr[i-Side*2-2] == 'O')
{
WeightGrid_ptr[i-Side-1] += 50;
}
}
//CHECK O --> Mid Top Vector
//If within allowed parameters
if (i > Side*2)
{
if(Grid_ptr[i + Side] == '?' && Grid_ptr[i + Side*2] == '?')
{
WeightGrid_ptr[i + Side] += 1;
WeightGrid_ptr[i + Side*2] += 1;
}
else if(Grid_ptr[i + Side] == 'O')
{
WeightGrid_ptr[i + Side*2] += 50;
}
else if (Grid_ptr[i + Side*2] == 'O')
{
WeightGrid_ptr[i + Side] += 50;
}
}
}
} // end for scan 'X' 'O'
//Get highest value from weightgrid, add an 'O' to that position, end method automatically
for (USHORT q = 0; q < GridSize; q++)
{
if (Grid_ptr[q] == '?')
{
//If a better spot is found
if (WeightGrid_ptr[q] > *fattest_ptr)
{
*fattest_ptr = WeightGrid_ptr[q];
*fattestIndex_ptr = q;
}
}
}
Grid_ptr[*fattestIndex_ptr] = 'O';
//SAFE DELETE POINTER WeightGrid_ptr
if (WeightGrid_ptr != NULL)
{
delete[] WeightGrid_ptr;
WeightGrid_ptr = NULL;
}
//SAFE DELETE POINTER fattest_ptr
if (fattest_ptr != NULL)
{
delete fattest_ptr;
fattest_ptr = NULL;
}
//SAFE DELETE POINTER fattestIndex_ptr
if (fattestIndex_ptr != NULL)
{
delete fattestIndex_ptr;
fattestIndex_ptr = NULL;
}
}
int _tmain(int argc, _TCHAR* argv[])
{
//& adress off |-| &x = 0x?
//* value pointed by |-| a = *b
//Make the required variables on the heap
USHORT GridHeight = 0;
USHORT GridWidth = 0;
USHORT GridSize = 0;
USHORT moveCounter = 0;
char currentMove;
USHORT input;
//bool* humanWin_ptr = new bool(false);
//bool* computerWin_ptr = new bool(false);
bool humanWin_ptr = false;
bool computerWin_ptr = false;
bool Draw = false;
cout << "A challanger has arrived!" << endl;
//WARNING FOR THIS BLOCK! Special condition on for loop!
for(;;)
{
cout << "Please state the width for the grid \n";
scanf_s("%hu", &input);
if (input > 2 && input < 20)
{
GridWidth = input;
break; //CRITICAL CODE
}
else
{
cout << "Input was not correct, please state a number between 3 and 20 \n\n";
cout << "Example of correct input '3' (without quotes) \n";
}
}
//WARNING FOR THIS BLOCK! Special condition on for loop!
for(;;)
{
cout << "Please state the height for the grid \n";
scanf_s("%hu", &input);
if (input > 2 && input < 20)
{
GridHeight = input;
break; //CRITICAL CODE
}
else
{
cout << "Input was not correct, please state a number between 3 and 20 \n\n";
cout << "Example of correct input '3' (without quotes) \n";
}
}
cout << "You have succesfully filled in the paperwork to create the Grid" << endl;
GridSize = GridHeight * GridWidth;
cout << "The total GridSize is " << GridSize << " tiles in size" << endl;
//if (GridWidth != GridHeigth)
//{
// cout << "Warning! \n\nGrid is not square. Program may run irregularly!";
// cout << "Close the program or press a key to continue";
// scanf();
//}
//Note: pointer to a Grid object on the heap
char* Grid_ptr = new char[GridSize];
//Initialize Grid as empty
for (USHORT i = 0; i < GridSize; i++)
{
Grid_ptr[i] = '?';
}
//Visualize this step
cout << "Grid created as empty Grid" << endl;
cout << endl;
cout << "Please read the following introduction if you wish for an explanation of the game" << endl;
cout << "You will be reffered to as Player One equally so the opponent as AI" << endl;
cout << "You always start with the first move" << endl;
cout << "The condition for victory is a line of X X X (3 total) in a single line, colomn or a diagonal line across the Grid" << endl;
cout << "Turns are exchanged per move 1 : 1, there are no time limits so use all you need" << endl;
cout << "Player One can not lose this 3x3 Grid game when the best option is always chosen" << endl;
cout << "Consider playing a larger field if you wish to win, Best of luck!" << endl;
cout << "The grid is filled in like this!" << endl;
PrintGrid(Grid_ptr, GridWidth, GridHeight, GridSize);
while(humanWin_ptr == false && computerWin_ptr == false && Draw == false)
{
cout << "Players One's Turn! \n";
cout << "Please fill in the number your X";
currentMove = 'H';
for(;;)
{
scanf_s("%i" , &input);
if (Grid_ptr[input] == 'X' || Grid_ptr[input] == 'O')
{
cout << "That space is already taken ,try another";
}
else
{
Grid_ptr[input] = 'X';
moveCounter++;
break;
}
}
cout << '\n';
PrintGrid(Grid_ptr, GridWidth, GridHeight, GridSize);
CheckForWin(Grid_ptr, GridSize, GridWidth, humanWin_ptr, computerWin_ptr, currentMove);
cout << "AI is making a move!" << endl;
currentMove = 'C';
useAI(Grid_ptr, GridSize, GridWidth);
cout << '\n';
PrintGrid(Grid_ptr, GridWidth, GridHeight, GridSize);
CheckForWin(Grid_ptr, GridSize, GridWidth, humanWin_ptr, computerWin_ptr, currentMove);
if (humanWin_ptr)
{
cout << "Congratulations you have won the game! \n";
char c;
puts ("Enter any text. Include a Space ('.') in a sentence to exit: \n");
do
{
c=getchar();
putchar (c);
}
while (c != ' ');
}
else if (computerWin_ptr)
{
cout << "The computer won this match, better luck next time! \n";
char c;
puts ("Enter any text. Include a Space ('.') in a sentence to exit: \n");
do
{
c=getchar();
putchar (c);
}
while (c != ' ');
}
if (moveCounter >= GridSize)
{
Draw = true;
cout << "The game was a draw, good fighting!";
}
}
//int ch = 0;
//ch = _getch();
//wint_t _getwch( void );
//SAFE DELETE POINTER GRID
if (Grid_ptr != NULL)
{
delete[] Grid_ptr;
Grid_ptr = NULL;
}
/*
//SAFE DELETE POINTER Human Win
if (humanWin_ptr != NULL)
{
delete humanWin_ptr;
humanWin_ptr = NULL;
}
//SAFE DELETE POINTER Computer Win
if (computerWin_ptr != NULL)
{
delete computerWin_ptr;
computerWin_ptr = NULL;
}*/
return 0;
}