Как найти k-й наименьший элемент в объединении двух отсортированных массивов? - PullRequest
95 голосов
/ 05 января 2011

Это домашнее задание.Они говорят, что требуется O(logN + logM), где N и M - длины массивов.

Давайте назовем массивы a и b.Очевидно, мы можем игнорировать все a[i] и b[i], где i> k.
Сначала давайте сравним a[k/2] и b[k/2].Пусть b[k/2]> a[k/2].Поэтому мы можем также отбросить все b[i], где i> k / 2.

Теперь у нас есть все a[i], где i b[i], где i

Какой следующий шаг?

Ответы [ 16 ]

61 голосов
/ 20 января 2012

Надеюсь, я не отвечу на твою домашнюю работу, так как прошло больше года с тех пор, как был задан этот вопрос.Вот хвостовое рекурсивное решение, которое займет время log (len (a) + len (b)).

Предположение: входные данные верны.т.е. k находится в диапазоне [0, len (a) + len (b)]

Базовые случаи:

  • Если длина одного из массивов равна 0, ответk-й элемент второго массива.

Этапы сокращения:

  • Если средний индекс a + средний индекс b меньше k
    • Если средний элемент a больше среднего элемента b, мы можем игнорировать первую половину b, настроить k.
    • , иначе игнорировать первую половину a, скорректировать k.
  • Иначе, если k меньше суммы средних индексов a и b:
    • Если средний элементa больше среднего элемента b, мы можем спокойно игнорировать вторую половину a
    • , в противном случае мы можем игнорировать вторую половину b

Код:

def kthlargest(arr1, arr2, k):
    if len(arr1) == 0:
        return arr2[k]
    elif len(arr2) == 0:
        return arr1[k]

    mida1 = len(arr1)/2
    mida2 = len(arr2)/2
    if mida1+mida2<k:
        if arr1[mida1]>arr2[mida2]:
            return kthlargest(arr1, arr2[mida2+1:], k-mida2-1)
        else:
            return kthlargest(arr1[mida1+1:], arr2, k-mida1-1)
    else:
        if arr1[mida1]>arr2[mida2]:
            return kthlargest(arr1[:mida1], arr2, k)
        else:
            return kthlargest(arr1, arr2[:mida2], k)

Обратите внимание, что мое решение заключается в создании новых копий меньших массивов при каждом вызове, это можно легко устранить, передав только начальный и конечный индексы исходных массивов.1050 *

48 голосов
/ 05 января 2011

У тебя есть, просто продолжай!И будьте осторожны с индексами ...

Для простоты я предположу, что N и M> k, поэтому сложность здесь O (log k), что O (log N + logM).

Псевдокод:

i = k/2
j = k - i
step = k/4
while step > 0
    if a[i-1] > b[j-1]
        i -= step
        j += step
    else
        i += step
        j -= step
    step /= 2

if a[i-1] > b[j-1]
    return a[i-1]
else
    return b[j-1]

Для демонстрации вы можете использовать инвариант цикла i + j = k, но я не буду выполнять всю вашу домашнюю работу:)

29 голосов
/ 30 марта 2015

Многие люди ответили на этот вопрос «k-й наименьший элемент из двух отсортированных массивов», но обычно только с общими идеями, а не с четким рабочим кодом или анализом граничных условий.с тем, как я пошел, чтобы помочь некоторым новичкам понять, с моим правильным рабочим кодом Java.A1 и A2 - два отсортированных восходящих массива, длина которых size1 и size2 соответственно.Нам нужно найти k-й наименьший элемент из объединения этих двух массивов.Здесь мы разумно предполагаем, что (k > 0 && k <= size1 + size2), что означает, что A1 и A2 не могут быть оба пустыми.

Сначала давайте подойдем к этому вопросу с помощью медленного алгоритма O (k).Метод заключается в сравнении первого элемента обоих массивов, A1[0] и A2[0].Возьми меньший, скажем A1[0], в наш карман.Затем сравните A1[1] с A2[0] и так далее.Повторяйте это действие, пока наш карман не достигнет k элементов.Очень важно: на первом шаге мы можем взять только 1018 * в нашем кармане.Мы НЕ МОЖЕМ включать или исключать A2[0] !!!

Следующий код O (k) дает вам один элемент перед правильным ответом.Здесь я использую его, чтобы показать свою идею и анализ граничных условий.У меня есть правильный код после этого:

private E kthSmallestSlowWithFault(int k) {
    int size1 = A1.length, size2 = A2.length;

    int index1 = 0, index2 = 0;
    // base case, k == 1
    if (k == 1) {
        if (size1 == 0) {
            return A2[index2];
        } else if (size2 == 0) {
            return A1[index1];
        } else if (A1[index1].compareTo(A2[index2]) < 0) {
            return A1[index1];
        } else {
            return A2[index2];
        }
    }

    /* in the next loop, we always assume there is one next element to compare with, so we can
     * commit to the smaller one. What if the last element is the kth one?
     */
    if (k == size1 + size2) {
        if (size1 == 0) {
            return A2[size2 - 1];
        } else if (size2 == 0) {
            return A1[size1 - 1];
        } else if (A1[size1 - 1].compareTo(A2[size2 - 1]) < 0) {
            return A1[size1 - 1];
        } else {
            return A2[size2 - 1];
        }
    }

    /*
     * only when k > 1, below loop will execute. In each loop, we commit to one element, till we
     * reach (index1 + index2 == k - 1) case. But the answer is not correct, always one element
     * ahead, because we didn't merge base case function into this loop yet.
     */
    int lastElementFromArray = 0;
    while (index1 + index2 < k - 1) {
        if (A1[index1].compareTo(A2[index2]) < 0) {
            index1++;
            lastElementFromArray = 1;
            // commit to one element from array A1, but that element is at (index1 - 1)!!!
        } else {
            index2++;
            lastElementFromArray = 2;
        }
    }
    if (lastElementFromArray == 1) {
        return A1[index1 - 1];
    } else {
        return A2[index2 - 1];
    }
}

Самая мощная идея состоит в том, что в каждом цикле мы всегда используем подход базового случая.После фиксации текущего наименьшего элемента мы на шаг приближаемся к цели: k-му наименьшему элементу.Никогда не прыгайте в середину и не запутайтесь и не потеряйтесь!

Соблюдая приведенный выше базовый код k == 1, k == size1+size2, и в сочетании с этим A1 и A2 не могут быть пустыми.Мы можем превратить логику в более сжатый стиль ниже.

Вот медленный, но правильный рабочий код:

private E kthSmallestSlow(int k) {
    // System.out.println("this is an O(k) speed algorithm, very concise");
    int size1 = A1.length, size2 = A2.length;

    int index1 = 0, index2 = 0;
    while (index1 + index2 < k - 1) {
        if (size1 > index1 && (size2 <= index2 || A1[index1].compareTo(A2[index2]) < 0)) {
            index1++; // here we commit to original index1 element, not the increment one!!!
        } else {
            index2++;
        }
    }
    // below is the (index1 + index2 == k - 1) base case
    // also eliminate the risk of referring to an element outside of index boundary
    if (size1 > index1 && (size2 <= index2 || A1[index1].compareTo(A2[index2]) < 0)) {
        return A1[index1];
    } else {
        return A2[index2];
    }
}

Теперь мы можем попробовать более быстрый алгоритм, запускаемый при O (log k).Аналогично, сравните A1[k/2] с A2[k/2];если A1[k/2] меньше, то все элементы от A1[0] до A1[k/2] должны быть в нашем кармане.Идея состоит в том, чтобы не просто фиксировать один элемент в каждом цикле;первый шаг содержит k/2 элементов.Опять же, мы не можем включать или исключать A2[0] до A2[k/2] в любом случаеТаким образом, на первом шаге мы не можем использовать более 1043 элементов.Для второго шага мы не можем пройти больше чем k/4 элементов ...

После каждого шага мы приближаемся к k-му элементу.В то же время каждый шаг становится все меньше и меньше, пока мы не достигнем (step == 1), что составляет (k-1 == index1+index2).Тогда мы снова можем обратиться к простому и мощному базовому случаю.

Вот правильный правильный код:

private E kthSmallestFast(int k) {
    // System.out.println("this is an O(log k) speed algorithm with meaningful variables name");
    int size1 = A1.length, size2 = A2.length;

    int index1 = 0, index2 = 0, step = 0;
    while (index1 + index2 < k - 1) {
        step = (k - index1 - index2) / 2;
        int step1 = index1 + step;
        int step2 = index2 + step;
        if (size1 > step1 - 1
                && (size2 <= step2 - 1 || A1[step1 - 1].compareTo(A2[step2 - 1]) < 0)) {
            index1 = step1; // commit to element at index = step1 - 1
        } else {
            index2 = step2;
        }
    }
    // the base case of (index1 + index2 == k - 1)
    if (size1 > index1 && (size2 <= index2 || A1[index1].compareTo(A2[index2]) < 0)) {
        return A1[index1];
    } else {
        return A2[index2];
    }
}

Некоторые люди могут беспокоиться, что если (index1+index2) перепрыгнет через k-1?Можем ли мы пропустить базовый случай (k-1 == index1+index2)?Это невозможно.Вы можете сложить 0,5 + 0,25 + 0,125 ... и никогда не превысите 1.

Конечно, очень легко превратить приведенный выше код в рекурсивный алгоритм:

private E kthSmallestFastRecur(int k, int index1, int index2, int size1, int size2) {
    // System.out.println("this is an O(log k) speed algorithm with meaningful variables name");

    // the base case of (index1 + index2 == k - 1)
    if (index1 + index2 == k - 1) {
        if (size1 > index1 && (size2 <= index2 || A1[index1].compareTo(A2[index2]) < 0)) {
            return A1[index1];
        } else {
            return A2[index2];
        }
    }

    int step = (k - index1 - index2) / 2;
    int step1 = index1 + step;
    int step2 = index2 + step;
    if (size1 > step1 - 1 && (size2 <= step2 - 1 || A1[step1 - 1].compareTo(A2[step2 - 1]) < 0)) {
        index1 = step1;
    } else {
        index2 = step2;
    }
    return kthSmallestFastRecur(k, index1, index2, size1, size2);
}

Надеюсь, что приведенный выше анализ и Java-код помогут вам понять.Но никогда не копируйте мой код в качестве домашней работы!Ура;)

5 голосов
/ 28 июля 2012

Вот C ++ итерационная версия решения @ lambdapilgrim (см. Объяснение алгоритма там):

#include <cassert>
#include <iterator>

template<class RandomAccessIterator, class Compare>
typename std::iterator_traits<RandomAccessIterator>::value_type
nsmallest_iter(RandomAccessIterator firsta, RandomAccessIterator lasta,
               RandomAccessIterator firstb, RandomAccessIterator lastb,
               size_t n,
               Compare less) {
  assert(issorted(firsta, lasta, less) && issorted(firstb, lastb, less));
  for ( ; ; ) {
    assert(n < static_cast<size_t>((lasta - firsta) + (lastb - firstb)));
    if (firsta == lasta) return *(firstb + n);
    if (firstb == lastb) return *(firsta + n);

    size_t mida = (lasta - firsta) / 2;
    size_t midb = (lastb - firstb) / 2;
    if ((mida + midb) < n) {
      if (less(*(firstb + midb), *(firsta + mida))) {
        firstb += (midb + 1);
        n -= (midb + 1);
      }
      else {
        firsta += (mida + 1);
        n -= (mida + 1);
      }
    }
    else {
      if (less(*(firstb + midb), *(firsta + mida)))
        lasta = (firsta + mida);
      else
        lastb = (firstb + midb);
    }
  }
}

Это работает для всех 0 <= n < (size(a) + size(b)) индексов и имеет O(log(size(a)) + log(size(b)))сложность.

Пример

#include <functional> // greater<>
#include <iostream>

#define SIZE(a) (sizeof(a) / sizeof(*a))

int main() {
  int a[] = {5,4,3};
  int b[] = {2,1,0};
  int k = 1; // find minimum value, the 1st smallest value in a,b

  int i = k - 1; // convert to zero-based indexing
  int v = nsmallest_iter(a, a + SIZE(a), b, b + SIZE(b),
                         SIZE(a)+SIZE(b)-1-i, std::greater<int>());
  std::cout << v << std::endl; // -> 0
  return v;
}
4 голосов
/ 25 сентября 2012

Моя попытка для первых k чисел, k-го числа в 2 отсортированных массивах и в n отсортированных массивах:

// require() is recognizable by node.js but not by browser;
// for running/debugging in browser, put utils.js and this file in <script> elements,
if (typeof require === "function") require("./utils.js");

// Find K largest numbers in two sorted arrays.
function k_largest(a, b, c, k) {
    var sa = a.length;
    var sb = b.length;
    if (sa + sb < k) return -1;
    var i = 0;
    var j = sa - 1;
    var m = sb - 1;
    while (i < k && j >= 0 && m >= 0) {
        if (a[j] > b[m]) {
            c[i] = a[j];
            i++;
            j--;
        } else {
            c[i] = b[m];
            i++;
            m--;
        }
    }
    debug.log(2, "i: "+ i + ", j: " + j + ", m: " + m);
    if (i === k) {
        return 0;
    } else if (j < 0) {
        while (i < k) {
            c[i++] = b[m--];
        }
    } else {
        while (i < k) c[i++] = a[j--];
    }
    return 0;
}

// find k-th largest or smallest number in 2 sorted arrays.
function kth(a, b, kd, dir){
    sa = a.length; sb = b.length;
    if (kd<1 || sa+sb < kd){
        throw "Mission Impossible! I quit!";
    }

    var k;
    //finding the kd_th largest == finding the smallest k_th;
    if (dir === 1){ k = kd;
    } else if (dir === -1){ k = sa + sb - kd + 1;}
    else throw "Direction has to be 1 (smallest) or -1 (largest).";

    return find_kth(a, b, k, sa-1, 0, sb-1, 0);
}

// find k-th smallest number in 2 sorted arrays;
function find_kth(c, d, k, cmax, cmin, dmax, dmin){

    sc = cmax-cmin+1; sd = dmax-dmin+1; k0 = k; cmin0 = cmin; dmin0 = dmin;
    debug.log(2, "=k: " + k +", sc: " + sc + ", cmax: " + cmax +", cmin: " + cmin + ", sd: " + sd +", dmax: " + dmax + ", dmin: " + dmin);

    c_comp = k0-sc;
    if (c_comp <= 0){
        cmax = cmin0 + k0-1;
    } else {
        dmin = dmin0 + c_comp-1;
        k -= c_comp-1;
    }

    d_comp = k0-sd;
    if (d_comp <= 0){
        dmax = dmin0 + k0-1;
    } else {
        cmin = cmin0 + d_comp-1;
        k -= d_comp-1;
    }
    sc = cmax-cmin+1; sd = dmax-dmin+1;

    debug.log(2, "#k: " + k +", sc: " + sc + ", cmax: " + cmax +", cmin: " + cmin + ", sd: " + sd +", dmax: " + dmax + ", dmin: " + dmin + ", c_comp: " + c_comp + ", d_comp: " + d_comp);

    if (k===1) return (c[cmin]<d[dmin] ? c[cmin] : d[dmin]);
    if (k === sc+sd) return (c[cmax]>d[dmax] ? c[cmax] : d[dmax]);

    m = Math.floor((cmax+cmin)/2);
    n = Math.floor((dmax+dmin)/2);

    debug.log(2, "m: " + m + ", n: "+n+", c[m]: "+c[m]+", d[n]: "+d[n]);

    if (c[m]<d[n]){
        if (m === cmax){ // only 1 element in c;
            return d[dmin+k-1];
        }

        k_next = k-(m-cmin+1);
        return find_kth(c, d, k_next, cmax, m+1, dmax, dmin);
    } else {
        if (n === dmax){
            return c[cmin+k-1];
        }

        k_next = k-(n-dmin+1);
        return find_kth(c, d, k_next, cmax, cmin, dmax, n+1);
    }
}

function traverse_at(a, ae, h, l, k, at, worker, wp){
    var n = ae ? ae.length : 0;
    var get_node;
    switch (at){
        case "k": get_node = function(idx){
                var node = {};
                var pos = l[idx] + Math.floor(k/n) - 1;
                if (pos<l[idx]){ node.pos = l[idx]; }
                else if (pos > h[idx]){ node.pos = h[idx];}
                else{ node.pos = pos; }

                node.idx = idx;
                node.val = a[idx][node.pos];
                debug.log(6, "pos: "+pos+"\nnode =");
                debug.log(6, node);
                return node;
            };
            break;
        case "l": get_node = function(idx){
                debug.log(6, "a["+idx+"][l["+idx+"]]: "+a[idx][l[idx]]);
                return a[idx][l[idx]];
            };
            break;
        case "h": get_node = function(idx){
                debug.log(6, "a["+idx+"][h["+idx+"]]: "+a[idx][h[idx]]);
                return a[idx][h[idx]];
            };
            break;
        case "s": get_node = function(idx){
                debug.log(6, "h["+idx+"]-l["+idx+"]+1: "+(h[idx] - l[idx] + 1));
                return h[idx] - l[idx] + 1;
            };
            break;
        default: get_node = function(){
                debug.log(1, "!!! Exception: get_node() returns null.");
                return null;
            };
            break;
    }

    worker.init();

    debug.log(6, "--* traverse_at() *--");

    var i;
    if (!wp){
        for (i=0; i<n; i++){
            worker.work(get_node(ae[i]));
        }    
    } else {
        for (i=0; i<n; i++){
            worker.work(get_node(ae[i]), wp);
        }
    }

    return worker.getResult();
}

sumKeeper = function(){
    var res = 0;
    return {
        init     : function(){ res = 0;},
        getResult: function(){
                debug.log(5, "@@ sumKeeper.getResult: returning: "+res);
                return res;
            },
        work     : function(node){ if (node!==null) res += node;}
    };
}();

maxPicker = function(){
    var res = null;
    return {
        init     : function(){ res = null;},
        getResult: function(){
                debug.log(5, "@@ maxPicker.getResult: returning: "+res);
                return res;
            },
        work     : function(node){
            if (res === null){ res = node;}
            else if (node!==null && node > res){ res = node;}
        }
    };    
}();

minPicker = function(){
    var res = null;
    return {
        init     : function(){ res = null;},
        getResult: function(){
                debug.log(5, "@@ minPicker.getResult: returning: ");
                debug.log(5, res);
                return res;
            },
        work     : function(node){
            if (res === null && node !== null){ res = node;}
            else if (node!==null &&
                node.val !==undefined &&
                node.val < res.val){ res = node; }
            else if (node!==null && node < res){ res = node;}
        }
    };  
}();

// find k-th smallest number in n sorted arrays;
// need to consider the case where some of the subarrays are taken out of the selection;
function kth_n(a, ae, k, h, l){
    var n = ae.length;
    debug.log(2, "------**  kth_n()  **-------");
    debug.log(2, "n: " +n+", k: " + k);
    debug.log(2, "ae: ["+ae+"],  len: "+ae.length);
    debug.log(2, "h: [" + h + "]");
    debug.log(2, "l: [" + l + "]");

    for (var i=0; i<n; i++){
        if (h[ae[i]]-l[ae[i]]+1>k) h[ae[i]]=l[ae[i]]+k-1;
    }
    debug.log(3, "--after reduction --");
    debug.log(3, "h: [" + h + "]");
    debug.log(3, "l: [" + l + "]");

    if (n === 1)
        return a[ae[0]][k-1]; 
    if (k === 1)
        return traverse_at(a, ae, h, l, k, "l", minPicker);
    if (k === traverse_at(a, ae, h, l, k, "s", sumKeeper))
        return traverse_at(a, ae, h, l, k, "h", maxPicker);

    var kn = traverse_at(a, ae, h, l, k, "k", minPicker);
    debug.log(3, "kn: ");
    debug.log(3, kn);

    var idx = kn.idx;
    debug.log(3, "last: k: "+k+", l["+kn.idx+"]: "+l[idx]);
    k -= kn.pos - l[idx] + 1;
    l[idx] = kn.pos + 1;
    debug.log(3, "next: "+"k: "+k+", l["+kn.idx+"]: "+l[idx]);
    if (h[idx]<l[idx]){ // all elements in a[idx] selected;
        //remove a[idx] from the arrays.
        debug.log(4, "All elements selected in a["+idx+"].");
        debug.log(5, "last ae: ["+ae+"]");
        ae.splice(ae.indexOf(idx), 1);
        h[idx] = l[idx] = "_"; // For display purpose only.
        debug.log(5, "next ae: ["+ae+"]");
    }

    return kth_n(a, ae, k, h, l);
}

function find_kth_in_arrays(a, k){

    if (!a || a.length<1 || k<1) throw "Mission Impossible!";

    var ae=[], h=[], l=[], n=0, s, ts=0;
    for (var i=0; i<a.length; i++){
        s = a[i] && a[i].length;
        if (s>0){
            ae.push(i); h.push(s-1); l.push(0);
            ts+=s;
        }
    }

    if (k>ts) throw "Too few elements to choose from!";

    return kth_n(a, ae, k, h, l);
}

/////////////////////////////////////////////////////
// tests
// To show everything: use 6.
debug.setLevel(1);

var a = [2, 3, 5, 7, 89, 223, 225, 667];
var b = [323, 555, 655, 673];
//var b = [99];
var c = [];

debug.log(1, "a = (len: " + a.length + ")");
debug.log(1, a);
debug.log(1, "b = (len: " + b.length + ")");
debug.log(1, b);

for (var k=1; k<a.length+b.length+1; k++){
    debug.log(1, "================== k: " + k + "=====================");

    if (k_largest(a, b, c, k) === 0 ){
      debug.log(1, "c = (len: "+c.length+")");
      debug.log(1, c);
    }

    try{
        result = kth(a, b, k, -1);
        debug.log(1, "===== The " + k + "-th largest number: " + result);
    } catch (e) {
        debug.log(0, "Error message from kth(): " + e);
    }
    debug.log("==================================================");
}

debug.log(1, "################# Now for the n sorted arrays ######################");
debug.log(1, "####################################################################");

x = [[1, 3, 5, 7, 9],
     [-2, 4, 6, 8, 10, 12],
     [8, 20, 33, 212, 310, 311, 623],
     [8],
     [0, 100, 700],
     [300],
     [],
     null];

debug.log(1, "x = (len: "+x.length+")");
debug.log(1, x);

for (var i=0, num=0; i<x.length; i++){
    if (x[i]!== null) num += x[i].length;
}
debug.log(1, "totoal number of elements: "+num);

// to test k in specific ranges:
var start = 0, end = 25;
for (k=start; k<end; k++){
    debug.log(1, "=========================== k: " + k + "===========================");

    try{
        result = find_kth_in_arrays(x, k);
        debug.log(1, "====== The " + k + "-th smallest number: " + result);
    } catch (e) {
        debug.log(1, "Error message from find_kth_in_arrays: " + e);
    }
    debug.log(1, "=================================================================");
}
debug.log(1, "x = (len: "+x.length+")");
debug.log(1, x);
debug.log(1, "totoal number of elements: "+num);

Полный код с утилитами отладки можно найти по адресу: https://github.com/brainclone/teasers/tree/master/kth

3 голосов
/ 05 марта 2011

Вот мой код, основанный на решении Жюля Оллеона:

int getNth(vector<int>& v1, vector<int>& v2, int n)
{
    int step = n / 4;

    int i1 = n / 2;
    int i2 = n - i1;

    while(!(v2[i2] >= v1[i1 - 1] && v1[i1] > v2[i2 - 1]))
    {                   
        if (v1[i1 - 1] >= v2[i2 - 1])
        {
            i1 -= step;
            i2 += step;
        }
        else
        {
            i1 += step;
            i2 -= step;
        }

        step /= 2;
        if (!step) step = 1;
    }

    if (v1[i1 - 1] >= v2[i2 - 1])
        return v1[i1 - 1];
    else
        return v2[i2 - 1];
}

int main()  
{  
    int a1[] = {1,2,3,4,5,6,7,8,9};
    int a2[] = {4,6,8,10,12};

    //int a1[] = {1,2,3,4,5,6,7,8,9};
    //int a2[] = {4,6,8,10,12};

    //int a1[] = {1,7,9,10,30};
    //int a2[] = {3,5,8,11};
    vector<int> v1(a1, a1+9);
    vector<int> v2(a2, a2+5);


    cout << getNth(v1, v2, 5);
    return 0;  
}  
2 голосов
/ 06 марта 2014

Вот мое решение. Код C ++ выводит наименьшее k-е значение, а также количество итераций, чтобы получить наименьшее k-е значение, используя цикл, который, на мой взгляд, имеет порядок log (k) Однако код требует, чтобы k было меньше длины первого массива, что является ограничением.

#include <iostream>
#include <vector>
#include<math.h>
using namespace std;

template<typename comparable>
comparable kthSmallest(vector<comparable> & a, vector<comparable> & b, int k){

int idx1; // Index in the first array a
int idx2; // Index in the second array b
comparable maxVal, minValPlus;
float iter = k;
int numIterations = 0;

if(k > a.size()){ // Checks if k is larger than the size of first array
    cout << " k is larger than the first array" << endl;
    return -1;
}
else{ // If all conditions are satisfied, initialize the indexes
    idx1 = k - 1;
    idx2 = -1;
}

for ( ; ; ){
    numIterations ++;
    if(idx2 == -1 || b[idx2] <= a[idx1] ){
        maxVal = a[idx1];
        minValPlus = b[idx2 + 1];
        idx1 = idx1 - ceil(iter/2); // Binary search
        idx2 = k - idx1 - 2; // Ensures sum of indices  = k - 2
    }
    else{
        maxVal = b[idx2];
        minValPlus = a[idx1 + 1];
        idx2 = idx2 - ceil(iter/2); // Binary search
        idx1 = k - idx2 - 2; // Ensures sum of indices  = k - 2
    }
    if(minValPlus >= maxVal){ // Check if kth smallest value has been found
        cout << "The number of iterations to find the " << k << "(th) smallest value is    " << numIterations << endl;
        return maxVal;

    }
    else
        iter/=2; // Reduce search space of binary search
   }
}

int main(){
//Test Cases
    vector<int> a = {2, 4, 9, 15, 22, 34, 45, 55, 62, 67, 78, 85};
    vector<int> b = {1, 3, 6, 8, 11, 13, 15, 20, 56, 67, 89};
    // Input k < a.size()
    int kthSmallestVal;
    for (int k = 1; k <= a.size() ; k++){
        kthSmallestVal = kthSmallest<int>( a ,b ,k );
        cout << k <<" (th) smallest Value is " << kthSmallestVal << endl << endl << endl;
    }
}
2 голосов
/ 11 декабря 2013

Вот моя реализация на C, вы можете обратиться к объяснениям @Jules Olléon для алгоритма: идея алгоритма состоит в том, что мы поддерживаем i + j = k и находим такие i и j, чтобы a [i-1] int find_k(int A[], int m, int B[], int n, int k) { if (m <= 0 )return B[k-1]; else if (n <= 0) return A[k-1]; int i = ( m/double (m + n)) * (k-1); if (i < m-1 && i<k-1) ++i; int j = k - 1 - i; int Ai_1 = (i > 0) ? A[i-1] : INT_MIN, Ai = (i<m)?A[i]:INT_MAX; int Bj_1 = (j > 0) ? B[j-1] : INT_MIN, Bj = (j<n)?B[j]:INT_MAX; if (Ai >= Bj_1 && Ai <= Bj) { return Ai; } else if (Bj >= Ai_1 && Bj <= Ai) { return Bj; } if (Ai < Bj_1) { // the answer can't be within A[0,...,i] return find_k(A+i+1, m-i-1, B, n, j); } else { // the answer can't be within A[0,...,i] return find_k(A, m, B+j+1, n-j-1, i); } }

1 голос
/ 04 января 2018
#include <bits/stdc++.h>
using namespace std;

int findKthElement(int a[],int start1,int end1,int b[],int start2,int end2,int k){

    if(start1 >= end1)return b[start2+k-1];
    if(start2 >= end2)return a[start1+k-1];
    if(k==1)return min(a[start1],b[start2]);
    int aMax = INT_MAX;
    int bMax = INT_MAX;
    if(start1+k/2-1 < end1) aMax = a[start1 + k/2 - 1];
    if(start2+k/2-1 < end2) bMax = b[start2 + k/2 - 1];

    if(aMax > bMax){
        return findKthElement(a,start1,end1,b,start2+k/2,end2,k-k/2);
    }
    else{
        return findKthElement(a,start1 + k/2,end1,b,start2,end2,k-k/2);
    }
}

int main(void){
    int t;
    scanf("%d",&t);
    while(t--){
        int n,m,k;
        cout<<"Enter the size of 1st Array"<<endl;
        cin>>n;
        int arr[n];
        cout<<"Enter the Element of 1st Array"<<endl;
        for(int i = 0;i<n;i++){
            cin>>arr[i];
        }
        cout<<"Enter the size of 2nd Array"<<endl;
        cin>>m;
        int arr1[m];
        cout<<"Enter the Element of 2nd Array"<<endl;
        for(int i = 0;i<m;i++){
            cin>>arr1[i];
        }
        cout<<"Enter The Value of K";
        cin>>k;
        sort(arr,arr+n);
        sort(arr1,arr1+m);
        cout<<findKthElement(arr,0,n,arr1,0,m,k)<<endl;
    }

    return 0;
}

Время Сложности составляет O (log (min (n, m)))

1 голос
/ 25 августа 2017

По сути, с помощью этого подхода вы можете отбрасывать k / 2 элементов на каждом шаге.K будет рекурсивно меняться от k => k / 2 => k / 4 => ... до тех пор, пока не достигнет 1. Итак, Сложность времени равна O (logk)

При k = 1 мы получаем самый низкий из двух массивов.

Следующий код находится в JAVA.Обратите внимание, что мы вычитаем 1 (-1) в коде из индексов, потому что индекс массива Java начинается с 0, а не с 1, , например.k = 3 представлен элементом во втором индексе массива.

private int kthElement(int[] arr1, int[] arr2, int k) {
        if (k < 1 || k > (arr1.length + arr2.length))
            return -1;
        return helper(arr1, 0, arr1.length - 1, arr2, 0, arr2.length - 1, k);
    }


private int helper(int[] arr1, int low1, int high1, int[] arr2, int low2, int high2, int k) {
    if (low1 > high1) {
        return arr2[low2 + k - 1];
    } else if (low2 > high2) {
        return arr1[low1 + k - 1];
    }
    if (k == 1) {
        return Math.min(arr1[low1], arr2[low2]);
    }
    int i = Math.min(low1 + k / 2, high1 + 1);
    int j = Math.min(low2 + k / 2, high2 + 1);
    if (arr1[i - 1] > arr2[j - 1]) {
        return helper(arr1, low1, high1, arr2, j, high2, k - (j - low2));
    } else {
        return helper(arr1, i, high1, arr2, low2, high2, k - (i - low1));
    }
}
...