Я пытаюсь написать простое приложение matrixMultiplication, которое умножает две квадратные матрицы с использованием CUDA. У меня проблема с тем, что мое ядро правильно вычисляет только в блоке (0,0) сетки.
Это мой код вызова:
dim3 dimBlock(4,4,1);
dim3 dimGrid(4,4,1);
//Launch the kernel;
MatrixMulKernel<<<dimGrid,dimBlock>>>(Md,Nd,Pd,Width);
Это моя функция ядра
__global__ void MatrixMulKernel(int* Md, int* Nd, int* Pd, int Width)
{
const int tx = threadIdx.x;
const int ty = threadIdx.y;
const int bx = blockIdx.x;
const int by = blockIdx.y;
const int row = (by * blockDim.y + ty);
const int col = (bx * blockDim.x + tx);
//Pvalue stores the Pd element that is computed by the thread
int Pvalue = 0;
for (int k = 0; k < Width; k++)
{
Pvalue += Md[row * Width + k] * Nd[k * Width + col];
}
__syncthreads();
//Write the matrix to device memory each thread writes one element
Pd[row * Width + col] = Pvalue;
}
Я думаю, что проблема может быть связана с памятью, но я немного растерялся. Что я должен сделать, чтобы этот код работал в нескольких блоках?