Комплексное умножение скважины определяется как:
((c1a * c2a) - (c1b * c2b)) + ((c1b * c2a) + (c1a * c2b))i
Таким образом, ваши 2 компонента в комплексном числе будут
((c1a * c2a) - (c1b * c2b)) and ((c1b * c2a) + (c1a * c2b))i
Итак, предположим, что вы используете 8 чисел с плавающей точкой для представления 4 комплексных чисел, определенных следующим образом:
c1a, c1b, c2a, c2b
c3a, c3b, c4a, c4b
И вы хотите одновременно (c1 * c3) и (c2 * c4), чтобы ваш код SSE выглядел как-то так:
(Обратите внимание, что я использовал MSVC под Windows, но принцип будет таким же).
__declspec( align( 16 ) ) float c1c2[] = { 1.0f, 2.0f, 3.0f, 4.0f };
__declspec( align( 16 ) ) float c3c4[] = { 4.0f, 3.0f, 2.0f, 1.0f };
__declspec( align( 16 ) ) float mulfactors[] = { -1.0f, 1.0f, -1.0f, 1.0f };
__declspec( align( 16 ) ) float res[] = { 0.0f, 0.0f, 0.0f, 0.0f };
__asm
{
movaps xmm0, xmmword ptr [c1c2] // Load c1 and c2 into xmm0.
movaps xmm1, xmmword ptr [c3c4] // Load c3 and c4 into xmm1.
movaps xmm4, xmmword ptr [mulfactors] // load multiplication factors into xmm4
movaps xmm2, xmm1
movaps xmm3, xmm0
shufps xmm2, xmm1, 0xA0 // Change order to c3a c3a c4a c4a and store in xmm2
shufps xmm1, xmm1, 0xF5 // Change order to c3b c3b c4b c4b and store in xmm1
shufps xmm3, xmm0, 0xB1 // change order to c1b c1a c2b c2a abd store in xmm3
mulps xmm0, xmm2
mulps xmm3, xmm1
mulps xmm3, xmm4 // Flip the signs of the 'a's so the add works correctly.
addps xmm0, xmm3 // Add together
movaps xmmword ptr [res], xmm0 // Store back out
};
float res1a = (c1c2[0] * c3c4[0]) - (c1c2[1] * c3c4[1]);
float res1b = (c1c2[1] * c3c4[0]) + (c1c2[0] * c3c4[1]);
float res2a = (c1c2[2] * c3c4[2]) - (c1c2[3] * c3c4[3]);
float res2b = (c1c2[3] * c3c4[2]) + (c1c2[2] * c3c4[3]);
if ( res1a != res[0] ||
res1b != res[1] ||
res2a != res[2] ||
res2b != res[3] )
{
_exit( 1 );
}
То, что я сделал выше, я немного упростил математику. Предполагая следующее:
c1a c1b c2a c2b
c3a c3b c4a c4b
Переставляя, я получаю следующие векторы
0 => c1a c1b c2a c2b
1 => c3b c3b c4b c4b
2 => c3a c3a c4a c4a
3 => c1b c1a c2b c2a
Затем я умножаю 0 и 2, чтобы получить:
0 => c1a * c3a, c1b * c3a, c2a * c4a, c2b * c4a
Затем я умножаю 3 и 1 вместе, чтобы получить:
3 => c1b * c3b, c1a * c3b, c2b * c4b, c2a * c4b
Наконец я переворачиваю знаки пары поплавков в 3
3 => -(c1b * c3b), c1a * c3b, -(c2b * c4b), c2a * c4b
Так что я могу сложить их вместе и получить
(c1a * c3a) - (c1b * c3b), (c1b * c3a ) + (c1a * c3b), (c2a * c4a) - (c2b * c4b), (c2b * c4a) + (c2a * c4b)
К чему мы стремились:)