Математическое представление на Haskell для операции умножения и сложения - PullRequest
26 голосов
/ 25 июня 2010

Я пишу игру на Хаскеле, и мой текущий проход в пользовательском интерфейсе включает в себя много процедурного генерирования геометрии.В настоящее время я сосредоточен на определении производительности одной конкретной операции (псевдокод C-ish):

Vec4f multiplier, addend;
Vec4f vecList[];
for (int i = 0; i < count; i++)
    vecList[i] = vecList[i] * multiplier + addend;

То есть стандартное умножение с добавлением в четыре числа с плавающей запятой, то, что нужно для оптимизации SIMD.

Результат отправляется в буфер вершин OpenGL, поэтому в конечном итоге он должен быть выгружен в плоский массив C.По той же причине, вычисления, вероятно, должны выполняться для типов типа «float».

Я искал либо библиотеку, либо собственное идиоматическое решение, чтобы быстро делать подобные вещи в Haskell, но каждое решениеЯ пришел к выводу, что, похоже, колеблется около 2% производительности (то есть в 50 раз медленнее) по сравнению с C из GCC с правильными флагами.Конечно, я начал с Haskell пару недель назад, поэтому мой опыт ограничен - вот почему я иду к вам, ребята.Кто-нибудь из вас может предложить более быструю реализацию Haskell или указатели на документацию по написанию высокопроизводительного кода на Haskell?

Во-первых, самое последнее решение на Haskell (время работы около 12 секунд).Я попробовал материал паттернов взрыва из этого поста , но это не имело никакого значения, УСТАРЕЛО.Замена 'multAdd' на '(\ iv -> v * 4)' позволила сократить время выполнения до 1,9 секунды, так что побитовая обработка (и связанные с этим проблемы с автоматической оптимизацией), похоже, не слишком ошибочны.

{-# LANGUAGE BangPatterns #-}
{-# OPTIONS_GHC -O2 -fvia-C -optc-O3 -fexcess-precision -optc-march=native #-}

import Data.Vector.Storable
import qualified Data.Vector.Storable as V
import Foreign.C.Types
import Data.Bits

repCount = 10000
arraySize = 20000

a = fromList $ [0.2::CFloat,  0.1, 0.6, 1.0]
m = fromList $ [0.99::CFloat, 0.7, 0.8, 0.6]

multAdd :: Int -> CFloat -> CFloat
multAdd !i !v = v * (m ! (i .&. 3)) + (a ! (i .&. 3))

multList :: Int -> Vector CFloat -> Vector CFloat
multList !count !src
    | count <= 0    = src
    | otherwise     = multList (count-1) $ V.imap multAdd src

main = do
    print $ Data.Vector.Storable.sum $ multList repCount $ 
        Data.Vector.Storable.replicate (arraySize*4) (0::CFloat)

Вот что у меня есть в C. В этом коде есть несколько #ifdefs, которые не позволяют его компилировать прямо;прокрутите вниз для тестового драйвера.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

typedef float v4fs __attribute__ ((vector_size (16)));
typedef struct { float x, y, z, w; } Vector4;

void setv4(v4fs *v, float x, float y, float z, float w) {
    float *a = (float*) v;
    a[0] = x;
    a[1] = y;
    a[2] = z;
    a[3] = w;
}

float sumv4(v4fs *v) {
    float *a = (float*) v;
    return a[0] + a[1] + a[2] + a[3];
}

void vecmult(v4fs *MAYBE_RESTRICT s, v4fs *MAYBE_RESTRICT d, v4fs a, v4fs m) {
    for (int j = 0; j < N; j++) {
        d[j] = s[j] * m + a;
    }
}

void scamult(float *MAYBE_RESTRICT s, float *MAYBE_RESTRICT d,
             Vector4 a, Vector4 m) {
    for (int j = 0; j < (N*4); j+=4) {
        d[j+0] = s[j+0] * m.x + a.x;
        d[j+1] = s[j+1] * m.y + a.y;
        d[j+2] = s[j+2] * m.z + a.z;
        d[j+3] = s[j+3] * m.w + a.w;
    }
}

int main () {
    v4fs a, m;
    v4fs *s, *d;

    setv4(&a, 0.2, 0.1, 0.6, 1.0);
    setv4(&m, 0.99, 0.7, 0.8, 0.6);

    s = calloc(N, sizeof(v4fs));
    d = s;

    double start = clock();
    for (int i = 0; i < M; i++) {

#ifdef COPY
        d = malloc(N * sizeof(v4fs));
#endif

#ifdef VECTOR
        vecmult(s, d, a, m);
#else
        Vector4 aa = *(Vector4*)(&a);
        Vector4 mm = *(Vector4*)(&m);
        scamult((float*)s, (float*)d, aa, mm);
#endif

#ifdef COPY
        free(s);
        s = d;
#endif
    }
    double end = clock();

    float sum = 0;
    for (int j = 0; j < N; j++) {
        sum += sumv4(s+j);
    }
    printf("%-50s %2.5f %f\n\n", NAME,
            (end - start) / (double) CLOCKS_PER_SEC, sum);
}

Этот скрипт скомпилирует и запустит тесты с несколькими комбинациями флагов gcc.Наилучшая производительность была достигнута с помощью cmath-64-native-O3-restrict-vector-nocopy в моей системе, заняв 0,22 секунды.

import System.Process
import GHC.IOBase

cBase = ("cmath", "gcc mult.c -ggdb --std=c99 -DM=10000 -DN=20000")
cOptions = [
            [("32", "-m32"), ("64", "-m64")],
            [("generic", ""), ("native", "-march=native -msse4")],
            [("O1", "-O1"), ("O2", "-O2"), ("O3", "-O3")],
            [("restrict", "-DMAYBE_RESTRICT=__restrict__"),
                ("norestrict", "-DMAYBE_RESTRICT=")],
            [("vector", "-DVECTOR"), ("scalar", "")],
            [("copy", "-DCOPY"), ("nocopy", "")]
           ]

-- Fold over the Cartesian product of the double list. Probably a Prelude function
-- or two that does this, but hey. The 'perm' referred to permutations until I realized
-- that this wasn't actually doing permutations. '
permfold :: (a -> a -> a) -> a -> [[a]] -> [a]
permfold f z [] = [z]
permfold f z (x:xs) = concat $ map (\a -> (permfold f (f z a) xs)) x

prepCmd :: (String, String) -> (String, String) -> (String, String)
prepCmd (name, cmd) (namea, cmda) =
    (name ++ "-" ++ namea, cmd ++ " " ++ cmda)

runCCmd name compileCmd = do
    res <- system (compileCmd ++ " -DNAME=\\\"" ++ name ++ "\\\" -o " ++ name)
    if res == ExitSuccess
        then do system ("./" ++ name)
                return ()
        else    putStrLn $ name ++ " did not compile"

main = do
    mapM_ (uncurry runCCmd) $ permfold prepCmd cBase cOptions

Ответы [ 2 ]

11 голосов
/ 28 июня 2010

Роман Лещинский отвечает:

На самом деле ядро ​​выглядит нормально мне. Использование unsafeIndex вместо (!) делает программу более чем в два раза быстро ( см. мой ответ выше ). Программа ниже намного быстрее, хотя (и чище, ИМО). Я подозреваю оставшаяся разница между этим и программа C обусловлена ​​общим Suckiness, когда дело доходит до плавания точка. ГОЛОВА производит лучшие результаты с NCG и -msse2

Сначала определите новый тип данных Vec4:

{-# LANGUAGE BangPatterns #-}

import Data.Vector.Storable
import qualified Data.Vector.Storable as V
import Foreign
import Foreign.C.Types

-- Define a 4 element vector type
data Vec4 = Vec4 {-# UNPACK #-} !CFloat
                 {-# UNPACK #-} !CFloat
                 {-# UNPACK #-} !CFloat
                 {-# UNPACK #-} !CFloat

Убедитесь, что мы можем сохранить его в массиве

instance Storable Vec4 where
  sizeOf _ = sizeOf (undefined :: CFloat) * 4
  alignment _ = alignment (undefined :: CFloat)

  {-# INLINE peek #-}
  peek p = do
             a <- peekElemOff q 0
             b <- peekElemOff q 1
             c <- peekElemOff q 2
             d <- peekElemOff q 3
             return (Vec4 a b c d)
    where
      q = castPtr p
  {-# INLINE poke #-}
  poke p (Vec4 a b c d) = do
             pokeElemOff q 0 a
             pokeElemOff q 1 b
             pokeElemOff q 2 c
             pokeElemOff q 3 d
    where
      q = castPtr p

Значения и методы для этого типа:

a = Vec4 0.2 0.1 0.6 1.0
m = Vec4 0.99 0.7 0.8 0.6

add :: Vec4 -> Vec4 -> Vec4
{-# INLINE add #-}
add (Vec4 a b c d) (Vec4 a' b' c' d') = Vec4 (a+a') (b+b') (c+c') (d+d')

mult :: Vec4 -> Vec4 -> Vec4
{-# INLINE mult #-}
mult (Vec4 a b c d) (Vec4 a' b' c' d') = Vec4 (a*a') (b*b') (c*c') (d*d')

vsum :: Vec4 -> CFloat
{-# INLINE vsum #-}
vsum (Vec4 a b c d) = a+b+c+d

multList :: Int -> Vector Vec4 -> Vector Vec4
multList !count !src
    | count <= 0    = src
    | otherwise     = multList (count-1) $ V.map (\v -> add (mult v m) a) src

main = do
    print $ Data.Vector.Storable.sum
          $ Data.Vector.Storable.map vsum
          $ multList repCount
          $ Data.Vector.Storable.replicate arraySize (Vec4 0 0 0 0)

repCount, arraySize :: Int
repCount = 10000
arraySize = 20000

С ghc 6.12.1, -O2 -fasm:

  • 1,752

С головкой ghc (26 июня), -O2 -fasm -msse2

  • 1,708

Это выглядит как самый идиоматичный способ написания массива Vec4 и обеспечивает лучшую производительность (в 11 раз быстрее, чем ваш оригинал). (И это может стать эталоном для бэкэнда GHC LLVM)

5 голосов
/ 25 июня 2010

Ну, так лучше. 3,5 с вместо 14 с

{-# LANGUAGE BangPatterns #-}
{-

-- multiply-add of four floats,
Vec4f multiplier, addend;
Vec4f vecList[];
for (int i = 0; i < count; i++)
    vecList[i] = vecList[i] * multiplier + addend;

-}

import qualified Data.Vector.Storable as V
import Data.Vector.Storable (Vector)
import Data.Bits

repCount, arraySize :: Int
repCount = 10000
arraySize = 20000

a, m :: Vector Float
a = V.fromList [0.2,  0.1, 0.6, 1.0]
m = V.fromList [0.99, 0.7, 0.8, 0.6]

multAdd :: Int -> Float -> Float
multAdd i v = v * (m `V.unsafeIndex` (i .&. 3)) + (a `V.unsafeIndex` (i .&. 3))

go :: Int -> Vector Float -> Vector Float
go n s
    | n <= 0    = s
    | otherwise = go (n-1) (f s)
  where
    f = V.imap multAdd

main = print . V.sum $ go repCount v
  where
    v :: Vector Float
    v = V.replicate (arraySize * 4) 0
            -- ^ a flattened Vec4f []

Что лучше, чем было:

$ ghc -O2 --make A.hs
[1 of 1] Compiling Main             ( A.hs, A.o )
Linking A ...

$ time ./A
516748.13
./A  3.58s user 0.01s system 99% cpu 3.593 total

MultAdd компилируется просто отлично:

        case readFloatOffAddr#
               rb_aVn
               (word2Int#
                  (and# (int2Word# sc1_s1Yx) __word 3))
               realWorld#
        of _ { (# s25_X1Tb, x4_X1Te #) ->
        case readFloatOffAddr#
               rb11_X118
               (word2Int#
                  (and# (int2Word# sc1_s1Yx) __word 3))
               realWorld#
        of _ { (# s26_X1WO, x5_X20B #) ->
        case writeFloatOffAddr#
               @ RealWorld
               a17_s1Oe
               sc3_s1Yz
               (plusFloat#
                  (timesFloat# x3_X1Qz x4_X1Te) x5_X20B)

Тем не менее, вы делаете 4-элементные умножения за раз в коде C, поэтому нам нужно сделать это напрямую, а не подделывать маскировки. GCC, вероятно, тоже развертывает цикл.

Таким образом, чтобы получить одинаковую производительность, нам нужно было бы умножить вектор (немного сложно, возможно, через бэкэнд LLVM) и развернуть цикл (возможно, смешивая его). Я приду сюда к Роману, чтобы узнать, есть ли другие очевидные вещи.

Одной из идей может быть использование вектора Vec4, а не его выравнивание.

...