Подробная реализация этого подхода к лексикографическому упорядочению
def next_permutation(case):
for index in range(1,len(case)):
Px_index = len(case) - 1 - index
#Start travelling from the end of the Data Structure
Px = case[-index-1]
Px_1 = case[-index]
#Search for a pair where latter the is greater than prior
if Px < Px_1 :
suffix = case[-index:]
pivot = Px
minimum_greater_than_pivot_suffix_index = -1
suffix_index=0
#Find the index inside the suffix where ::: [minimum value is greater than the pivot]
for Py in suffix:
if pivot < Py:
if minimum_greater_than_pivot_suffix_index == -1 or suffix[minimum_greater_than_pivot_suffix_index] >= Py:
minimum_greater_than_pivot_suffix_index=suffix_index
suffix_index +=1
#index in the main array
minimum_greater_than_pivot_index = minimum_greater_than_pivot_suffix_index + Px_index +1
#SWAP
temp = case[minimum_greater_than_pivot_index]
case[minimum_greater_than_pivot_index] = case[Px_index]
case[Px_index] = temp
#Sort suffix
new_suffix = case[Px_index+1:]
new_suffix.sort()
#Build final Version
new_prefix = case[:Px_index+1]
next_permutation = new_prefix + new_suffix
return next_permutation
elif index == (len(case) -1):
#This means that this is at the highest possible lexicographic order
return False
#EXAMPLE EXECUTIONS
print("===INT===")
#INT LIST
case = [0, 1, 2, 5, 3, 3, 0]
print(case)
print(next_permutation(case))
print("===CHAR===")
#STRING
case_char = list("dkhc")
case = [ord(c) for c in case_char]
print(case)
case = next_permutation(case)
print(case)
case_char = [str(chr(c)) for c in case]
print(case_char)
print(''.join(case_char))