Поскольку, кажется, никто не знает о существующей реализации, я сам ее кодировал:)
Как это работает:
- Вы должны вызвать
sqlite3_open_v2
с именем пользовательской файловой системы в качестве последнего параметра
- в этой файловой системе «файл» эквивалентен
std::shared_ptr<std::iostream>
- имя файла, который вы передаете
sqlite3_open_v2
, является lexical_cast 'of std::shared_ptr<std::iostream>*
; функция открытия файловой системы сделает копию этого shared_ptr
Вы можете задаться вопросом, почему я использовал lexical_cast, хотя я мог использовать reinterpret_cast<const char*>(&stream)
. Это связано с тем, что SQLite вызывает strcpy
для имени файла, что может вызвать переполнение буфера или проблемы с усечением данных. Также SQLite берет наше имя файла и добавляет «-journal» или «-wal» для генерации временных имен файлов. Это может вызвать другие проблемы.
Код действительно далек от совершенства (некоторые вещи не реализованы), но он работает для некоторых основных операций, которые я пробовал (создание таблицы, вставка некоторых записей и выбор).
РЕДАКТИРОВАТЬ: временные таблицы и фиксации / откаты тоже работают
void openConnection(std::shared_ptr<std::iostream> stream) {
sqlite3* ptr = nullptr;
// lexical_cast'ing the pointer to the stream into a string
// take extra care that it is a shared_ptr<iostream> and not istream or ostream or whatever
std::stringstream filenameStream;
filenameStream << reinterpret_cast<const void*>(&stream);
if (sqlite3_open_v2(filenameStream.str().c_str(), &ptr, 0, getIostreamVFSName().c_str()) != SQLITE_OK)
throw std::runtime_error(sqlite3_errmsg(ptr));
// ...use 'ptr' here...
}
// this function registers our custom VFS and return its name
std::string getIostreamVFSName() {
// a mutex protects the body of this function because we don't want to register the VFS twice
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
// check if the VFS is already registered, in this case we directly return
static const char* vfsName = "iostream_vfs_handler";
if (sqlite3_vfs_find(vfsName) != nullptr)
return vfsName;
// this is the structure that will store all the custom informations about an opened file
// all the functions get in fact pointer to an sqlite3_file object
// we give SQLite the size of this structure and SQLite will allocate it for us
// 'xOpen' will have to call all the members' constructors (using placement-new), and 'xClose' will call all the destructors
struct File : sqlite3_file {
std::shared_ptr<std::iostream> stream; // pointer to the source stream
int lockLevel; // level of lock by SQLite ; goes from 0 (not locked) to 4 (exclusive lock)
};
// making sure that the 'sqlite3_file' structure is at offset 0 in the 'File' structure
static_assert(offsetof(File, pMethods) == 0, "Wrong data alignment in custom SQLite3 VFS, lots of weird errors will happen during runtime");
// structure which contains static functions that we are going to pass to SQLite
// TODO: VC++2010 doesn't support lambda function treated as regular functions, or we would use this
struct Functions {
// opens a file by filling a sqlite3_file structure
// the name of the file should be the offset in memory where to find a "std::shared_ptr<std::iostream>"
// eg. you create a "std::shared_ptr<std::iostream>" whose memory location is 0x12345678
// you have to pass "12345678" as the file name
// this function will make a copy of the shared_ptr and store it in the sqlite3_file
static int xOpen(sqlite3_vfs*, const char* zName, sqlite3_file* fileBase, int flags, int *pOutFlags) {
// filling a structure with a list of methods that will be used by SQLite3 for this particular file
static sqlite3_io_methods methods;
methods.iVersion = 1;
methods.xClose = &xClose;
methods.xRead = &xRead;
methods.xWrite = &xWrite;
methods.xTruncate = &xTruncate;
methods.xSync = &xSync;
methods.xFileSize = &xFileSize;
methods.xLock = &xLock;
methods.xUnlock = &xUnlock;
methods.xCheckReservedLock = &xCheckReservedLock;
methods.xFileControl = &xFileControl;
methods.xSectorSize = &xSectorSize;
methods.xDeviceCharacteristics = &xDeviceCharacteristics;
fileBase->pMethods = &methods;
// SQLite allocated a buffer large enough to use it as a "File" object (see above)
auto fileData = static_cast<File*>(fileBase);
fileData->lockLevel = 0;
// if the name of the file doesn't contain a lexical_cast'ed pointer, then this is not our main DB file
// (note: the flags can also be used to determine this)
if (zName == nullptr || strlen(zName) != sizeof(void*) * 2) {
assert(flags | SQLITE_OPEN_CREATE);
// if this is not our main DB file, we create a temporary stringstream that will be deleted when the file is closed
// this behavior is different than expected from a file system (where file are permanent)
// but SQLite seems to accept it
new (&fileData->stream) std::shared_ptr<std::iostream>(std::make_shared<std::stringstream>(std::ios_base::in | std::ios_base::out | std::ios_base::binary));
} else {
// decoding our pointer, ie. un-lexical_cast'ing it
std::stringstream filenameStream(zName);
void* sharedPtrAddress = nullptr;
filenameStream >> sharedPtrAddress;
// our pointer points to a shared_ptr<std::iostream>, we make a copy of it
new (&fileData->stream) std::shared_ptr<std::iostream>(*static_cast<std::shared_ptr<std::iostream>*>(sharedPtrAddress));
}
assert(fileData->stream->good());
// I don't really know what to output as flags
// the "winOpen" implementation only sets either "readwrite" or "readonly"
if (pOutFlags != nullptr)
*pOutFlags = SQLITE_OPEN_READWRITE;
return SQLITE_OK;
}
static int xClose(sqlite3_file* fileBase) {
auto fileData = static_cast<File*>(fileBase);
assert(!fileData->stream->fail());
// we have to manually call the destructors of the objects in the structure
// because we created them with placement-new
fileData->stream.~shared_ptr();
return SQLITE_OK;
}
static int xRead(sqlite3_file* fileBase, void* buffer, int quantity, sqlite3_int64 offset) {
auto fileData = static_cast<File*>(fileBase);
assert(fileData->stream);
assert(fileData->stream->good());
fileData->stream->sync();
// we try to seek to the offset we want to read
fileData->stream->seekg(offset, std::ios::beg);
// if this fails, we'll just tell SQLite that we couldn't read the quantity it wanted
if (fileData->stream->fail()) {
fileData->stream->clear();
memset(static_cast<char*>(buffer), 0, quantity);
return SQLITE_IOERR_SHORT_READ;
}
// reading data
fileData->stream->read(static_cast<char*>(buffer), quantity);
fileData->stream->clear();
// if we reached EOF, gcount will be < to the quantity we have to read
// if this happens, SQLite asks us to fill the rest of the buffer with 0s
const auto gcount = fileData->stream->gcount();
if (gcount < quantity) {
memset(static_cast<char*>(buffer) + gcount, 0, static_cast<size_t>(quantity - gcount));
return SQLITE_IOERR_SHORT_READ;
}
return SQLITE_OK;
}
static int xWrite(sqlite3_file* fileBase, const void* buffer, int quantity, sqlite3_int64 offset) {
auto fileData = static_cast<File*>(fileBase);
assert(!fileData->stream->fail());
fileData->stream->sync();
// contrary to reading operating, SQLite doesn't accept partial writes
// either we succeed or we fail
fileData->stream->seekp(offset, std::ios::beg);
if (fileData->stream->fail()) {
fileData->stream->clear();
return SQLITE_IOERR_WRITE;
}
fileData->stream->write(static_cast<const char*>(buffer), quantity);
if (fileData->stream->fail()) {
fileData->stream->clear();
return SQLITE_IOERR_WRITE;
}
return SQLITE_OK;
}
static int xTruncate(sqlite3_file* fileBase, sqlite3_int64 size) {
// it is not possible to truncate a stream
// it makes sense to truncate a file or a buffer, but not a generic stream
// however it is possible to implement the xTruncate function as a no-op
return SQLITE_OK;
}
static int xSync(sqlite3_file* fileBase, int) {
// the flag passed as parameter is supposed to make a difference between a "partial sync" and a "full sync"
// we don't care and just call sync
auto fileData = static_cast<File*>(fileBase);
return fileData->stream->sync();
}
static int xFileSize(sqlite3_file* fileBase, sqlite3_int64* outputSize) {
// this function outputs the size of the file, wherever the read pointer or write pointer is
auto fileData = static_cast<File*>(fileBase);
assert(!fileData->stream->fail());
// we don't care about restoring the previous read pointer location,
// since the next operation will move it anyway
*outputSize = fileData->stream->seekg(0, std::ios::end).tellg();
assert(*outputSize != -1);
if (fileData->stream->fail())
fileData->stream->clear();
return SQLITE_OK;
}
static int xLock(sqlite3_file* fileBase, int level) {
auto fileData = static_cast<File*>(fileBase);
assert(level < std::numeric_limits<decltype(fileData->lockLevel)>::max());
fileData->lockLevel = level;
return SQLITE_OK;
}
static int xUnlock(sqlite3_file* fileBase, int level) {
auto fileData = static_cast<File*>(fileBase);
assert(level >= 0);
fileData->lockLevel = level;
return SQLITE_OK;
}
static int xCheckReservedLock(sqlite3_file* fileBase, int* pResOut) {
// this function outputs "true" if the file is locked,
// ie. if its lock level is >= 1
auto fileData = static_cast<File*>(fileBase);
*pResOut = (fileData->lockLevel >= 1);
return SQLITE_OK;
}
static int xFileControl(sqlite3_file* fileBase, int op, void* pArg) {
// this function is bit weird because it's supposed to handle generic operations
// the 'op' parameter is the operation code, and 'pArg' points to the arguments of the operation
auto fileData = static_cast<File*>(fileBase);
switch(op) {
case SQLITE_FCNTL_LOCKSTATE:
// outputs the current lock level of the file in reinterpret_cast<int*>(pArg)
*reinterpret_cast<int*>(pArg) = fileData->lockLevel;
break;
case SQLITE_FCNTL_SIZE_HINT:
// gives a hint about the size of the final file in reinterpret_cast<int*>(pArg)
break;
case SQLITE_FCNTL_CHUNK_SIZE:
// gives a hint about the size of blocks of data that SQLite will write at once
break;
// some operations are not documented (and not used in practice),
// so I'll leave them alone
case SQLITE_GET_LOCKPROXYFILE: return SQLITE_ERROR;
case SQLITE_SET_LOCKPROXYFILE: return SQLITE_ERROR;
case SQLITE_LAST_ERRNO: return SQLITE_ERROR;
}
return SQLITE_OK;
}
static int xSectorSize(sqlite3_file*) {
// returns the size of a sector of the HDD,
// we just return a dummy value
return 512;
}
static int xDeviceCharacteristics(sqlite3_file*) {
// returns the capabilities of the HDD
// see http://www.sqlite.org/c3ref/c_iocap_atomic.html
return SQLITE_IOCAP_ATOMIC | SQLITE_IOCAP_SAFE_APPEND | SQLITE_IOCAP_SEQUENTIAL;
}
static int xDelete(sqlite3_vfs*, const char* zName, int syncDir) {
// deletes a file ; this is called on 'journal' or 'wal' files
// these files are treated temporary by 'xOpen' (see above) and are destroyed when 'xClose' is called anyway
return SQLITE_OK;
}
static int xAccess(sqlite3_vfs*, const char* zName, int flags, int* pResOut) {
// depending on the value of 'flags':
// * outputs true if the file exists
// * outputs true if the file can be read
// * outputs true if the file can be written
// we handle all cases at once by returning true only if the file is the name of our main database
*pResOut = (strlen(zName) == sizeof(void*) * 2);
return SQLITE_OK;
}
static int xFullPathname(sqlite3_vfs*, const char* zName, int nOut, char* zOut) {
// this function turns a relative path into an absolute path
// since our file names are just lexical_cast'ed pointers, we just strcpy
strcpy_s(zOut, nOut, zName);
return SQLITE_OK;
}
static int xRandomness(sqlite3_vfs*, int nByte, char* zOut) {
// this function generates a random serie of characters to write in 'zOut'
// we use C++0x's <random> features
static std::mt19937 randomGenerator;
static std::uniform_int<char> randomDistributor;
for (auto i = 0; i < nByte; ++i)
zOut[i] = randomDistributor(randomGenerator);
return SQLITE_OK;
}
static int xSleep(sqlite3_vfs*, int microseconds) {
std::this_thread::sleep(std::chrono::microseconds(microseconds));
return SQLITE_OK;
}
static int xCurrentTime(sqlite3_vfs*, double* output) {
// this function should return the number of days elapsed since
// "noon in Greenwich on November 24, 4714 B.C according to the proleptic Gregorian calendar"
// I picked this constant from sqlite3.c which will make our life easier
static const double unixEpoch = 2440587.5;
*output = unixEpoch + double(time(nullptr)) / (60.*60.*24.);
return SQLITE_OK;
}
static int xCurrentTimeInt64(sqlite3_vfs*, sqlite3_int64* output) {
// this function should return the number of milliseconds elapsed since
// "noon in Greenwich on November 24, 4714 B.C according to the proleptic Gregorian calendar"
// I picked this constant from sqlite3.c which will make our life easier
// note: I wonder if it is not hundredth of seconds instead
static const sqlite3_int64 unixEpoch = 24405875 * sqlite3_int64(60*60*24*100);
*output = unixEpoch + time(nullptr) * 1000;
return SQLITE_OK;
}
};
// creating the VFS structure
// TODO: some functions are not implemented due to lack of documentation ; I'll have to read sqlite3.c to find out
static sqlite3_vfs readStructure;
memset(&readStructure, 0, sizeof(readStructure));
readStructure.iVersion = 2;
readStructure.szOsFile = sizeof(File);
readStructure.mxPathname = 256;
readStructure.zName = vfsName;
readStructure.pAppData = nullptr;
readStructure.xOpen = &Functions::xOpen;
readStructure.xDelete = &Functions::xDelete;
readStructure.xAccess = &Functions::xAccess;
readStructure.xFullPathname = &Functions::xFullPathname;
/*readStructure.xDlOpen = &Functions::xOpen;
readStructure.xDlError = &Functions::xOpen;
readStructure.xDlSym = &Functions::xOpen;
readStructure.xDlClose = &Functions::xOpen;*/
readStructure.xRandomness = &Functions::xRandomness;
readStructure.xSleep = &Functions::xSleep;
readStructure.xCurrentTime = &Functions::xCurrentTime;
//readStructure.xGetLastError = &Functions::xOpen;
readStructure.xCurrentTimeInt64 = &Functions::xCurrentTimeInt64;
// the second parameter of this function tells if
// it should be made the default file system
sqlite3_vfs_register(&readStructure, false);
return vfsName;
}