Введение
Я реализовал простую программу на C ++ для вашего рассмотрения (протестировано в Visual Studio 2010). Он использует только Win32 API (и стандартную библиотеку для вывода на консоль и немного рандомизации). Вы должны иметь возможность добавить его в новый консольный проект Win32 (без предварительно скомпилированных заголовков), скомпилировать и запустить.
Решение
#include <tchar.h>
#include <windows.h>
//---------------------------------------------------------
// Defines synchronization info structure. All threads will
// use the same instance of this struct to implement randezvous/
// barrier synchronization pattern.
struct SyncInfo
{
SyncInfo(int threadsCount) : Awaiting(threadsCount), ThreadsCount(threadsCount), Semaphore(::CreateSemaphore(0, 0, 1024, 0)) {};
~SyncInfo() { ::CloseHandle(this->Semaphore); }
volatile unsigned int Awaiting; // how many threads still have to complete their iteration
const int ThreadsCount;
const HANDLE Semaphore;
};
//---------------------------------------------------------
// Thread-specific parameters. Note that Sync is a reference
// (i.e. all threads share the same SyncInfo instance).
struct ThreadParams
{
ThreadParams(SyncInfo &sync, int ordinal, int delay) : Sync(sync), Ordinal(ordinal), Delay(delay) {};
SyncInfo &Sync;
const int Ordinal;
const int Delay;
};
//---------------------------------------------------------
// Called at the end of each itaration, it will "randezvous"
// (meet) all the threads before returning (so that next
// iteration can begin). In practical terms this function
// will block until all the other threads finish their iteration.
static void RandezvousOthers(SyncInfo &sync, int ordinal)
{
if (0 == ::InterlockedDecrement(&(sync.Awaiting))) { // are we the last ones to arrive?
// at this point, all the other threads are blocking on the semaphore
// so we can manipulate shared structures without having to worry
// about conflicts
sync.Awaiting = sync.ThreadsCount;
wprintf(L"Thread %d is the last to arrive, releasing synchronization barrier\n", ordinal);
wprintf(L"---~~~---\n");
// let's release the other threads from their slumber
// by using the semaphore
::ReleaseSemaphore(sync.Semaphore, sync.ThreadsCount - 1, 0); // "ThreadsCount - 1" because this last thread will not block on semaphore
}
else { // nope, there are other threads still working on the iteration so let's wait
wprintf(L"Thread %d is waiting on synchronization barrier\n", ordinal);
::WaitForSingleObject(sync.Semaphore, INFINITE); // note that return value should be validated at this point ;)
}
}
//---------------------------------------------------------
// Define worker thread lifetime. It starts with retrieving
// thread-specific parameters, then loops through 5 iterations
// (randezvous-ing with other threads at the end of each),
// and then finishes (the thread can then be joined).
static DWORD WINAPI ThreadProc(void *p)
{
ThreadParams *params = static_cast<ThreadParams *>(p);
wprintf(L"Starting thread %d\n", params->Ordinal);
for (int i = 1; i <= 5; ++i) {
wprintf(L"Thread %d is executing iteration #%d (%d delay)\n", params->Ordinal, i, params->Delay);
::Sleep(params->Delay);
wprintf(L"Thread %d is synchronizing end of iteration #%d\n", params->Ordinal, i);
RandezvousOthers(params->Sync, params->Ordinal);
}
wprintf(L"Finishing thread %d\n", params->Ordinal);
return 0;
}
//---------------------------------------------------------
// Program to illustrate iteration-lockstep C++ solution.
int _tmain(int argc, _TCHAR* argv[])
{
// prepare to run
::srand(::GetTickCount()); // pseudo-randomize random values :-)
SyncInfo sync(4);
ThreadParams p[] = {
ThreadParams(sync, 1, ::rand() * 900 / RAND_MAX + 100), // a delay between 200 and 1000 milliseconds will simulate work that an iteration would do
ThreadParams(sync, 2, ::rand() * 900 / RAND_MAX + 100),
ThreadParams(sync, 3, ::rand() * 900 / RAND_MAX + 100),
ThreadParams(sync, 4, ::rand() * 900 / RAND_MAX + 100),
};
// let the threads rip
HANDLE t[] = {
::CreateThread(0, 0, ThreadProc, p + 0, 0, 0),
::CreateThread(0, 0, ThreadProc, p + 1, 0, 0),
::CreateThread(0, 0, ThreadProc, p + 2, 0, 0),
::CreateThread(0, 0, ThreadProc, p + 3, 0, 0),
};
// wait for the threads to finish (join)
::WaitForMultipleObjects(4, t, true, INFINITE);
return 0;
}
Пример вывода
Запуск этой программы на моей машине (двухъядерный) дает следующий вывод:
Starting thread 1
Starting thread 2
Starting thread 4
Thread 1 is executing iteration #1 (712 delay)
Starting thread 3
Thread 2 is executing iteration #1 (798 delay)
Thread 4 is executing iteration #1 (477 delay)
Thread 3 is executing iteration #1 (104 delay)
Thread 3 is synchronizing end of iteration #1
Thread 3 is waiting on synchronization barrier
Thread 4 is synchronizing end of iteration #1
Thread 4 is waiting on synchronization barrier
Thread 1 is synchronizing end of iteration #1
Thread 1 is waiting on synchronization barrier
Thread 2 is synchronizing end of iteration #1
Thread 2 is the last to arrive, releasing synchronization barrier
---~~~---
Thread 2 is executing iteration #2 (798 delay)
Thread 3 is executing iteration #2 (104 delay)
Thread 1 is executing iteration #2 (712 delay)
Thread 4 is executing iteration #2 (477 delay)
Thread 3 is synchronizing end of iteration #2
Thread 3 is waiting on synchronization barrier
Thread 4 is synchronizing end of iteration #2
Thread 4 is waiting on synchronization barrier
Thread 1 is synchronizing end of iteration #2
Thread 1 is waiting on synchronization barrier
Thread 2 is synchronizing end of iteration #2
Thread 2 is the last to arrive, releasing synchronization barrier
---~~~---
Thread 4 is executing iteration #3 (477 delay)
Thread 3 is executing iteration #3 (104 delay)
Thread 1 is executing iteration #3 (712 delay)
Thread 2 is executing iteration #3 (798 delay)
Thread 3 is synchronizing end of iteration #3
Thread 3 is waiting on synchronization barrier
Thread 4 is synchronizing end of iteration #3
Thread 4 is waiting on synchronization barrier
Thread 1 is synchronizing end of iteration #3
Thread 1 is waiting on synchronization barrier
Thread 2 is synchronizing end of iteration #3
Thread 2 is the last to arrive, releasing synchronization barrier
---~~~---
Thread 2 is executing iteration #4 (798 delay)
Thread 3 is executing iteration #4 (104 delay)
Thread 1 is executing iteration #4 (712 delay)
Thread 4 is executing iteration #4 (477 delay)
Thread 3 is synchronizing end of iteration #4
Thread 3 is waiting on synchronization barrier
Thread 4 is synchronizing end of iteration #4
Thread 4 is waiting on synchronization barrier
Thread 1 is synchronizing end of iteration #4
Thread 1 is waiting on synchronization barrier
Thread 2 is synchronizing end of iteration #4
Thread 2 is the last to arrive, releasing synchronization barrier
---~~~---
Thread 3 is executing iteration #5 (104 delay)
Thread 4 is executing iteration #5 (477 delay)
Thread 1 is executing iteration #5 (712 delay)
Thread 2 is executing iteration #5 (798 delay)
Thread 3 is synchronizing end of iteration #5
Thread 3 is waiting on synchronization barrier
Thread 4 is synchronizing end of iteration #5
Thread 4 is waiting on synchronization barrier
Thread 1 is synchronizing end of iteration #5
Thread 1 is waiting on synchronization barrier
Thread 2 is synchronizing end of iteration #5
Thread 2 is the last to arrive, releasing synchronization barrier
---~~~---
Finishing thread 4
Finishing thread 3
Finishing thread 2
Finishing thread 1
Обратите внимание, что для простоты каждый поток имеет случайную длительность итерации, но все итерации этого потока будут использовать одну и ту же случайную продолжительность (т. Е. Она не меняется между итерациями).
Как это работает?
«Ядром» решения является функция «RandezvousOthers». Эта функция либо блокирует общий семафор (если поток, в котором была вызвана эта функция, была не последним, вызвавшим эту функцию), либо сбрасывает структуру Sync и разблокирует все потоки, блокирующие общий семафор (если поток, для которого была вызвана функция, которая вызывала функцию последней).